Artwork

Machine Learning Street Talk (MLST)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Machine Learning Street Talk (MLST) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Why Your GPUs are underutilised for AI - CentML CEO Explains

2:08:40
 
공유
 

Manage episode 450014752 series 2803422
Machine Learning Street Talk (MLST)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Machine Learning Street Talk (MLST) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Prof. Gennady Pekhimenko (CEO of CentML, UofT) joins us in this *sponsored episode* to dive deep into AI system optimization and enterprise implementation. From NVIDIA's technical leadership model to the rise of open-source AI, Pekhimenko shares insights on bridging the gap between academic research and industrial applications. Learn about "dark silicon," GPU utilization challenges in ML workloads, and how modern enterprises can optimize their AI infrastructure. The conversation explores why some companies achieve only 10% GPU efficiency and practical solutions for improving AI system performance. A must-watch for anyone interested in the technical foundations of enterprise AI and hardware optimization.

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Cheaper, faster, no commitments, pay as you go, scale massively, simple to setup. Check it out!

https://centml.ai/pricing/

SPONSOR MESSAGES:

MLST is also sponsored by Tufa AI Labs - https://tufalabs.ai/

They are hiring cracked ML engineers/researchers to work on ARC and build AGI!

SHOWNOTES (diarised transcript, TOC, references, summary, best quotes etc)

https://www.dropbox.com/scl/fi/w9kbpso7fawtm286kkp6j/Gennady.pdf?rlkey=aqjqmncx3kjnatk2il1gbgknk&st=2a9mccj8&dl=0

TOC:

1. AI Strategy and Leadership

[00:00:00] 1.1 Technical Leadership and Corporate Structure

[00:09:55] 1.2 Open Source vs Proprietary AI Models

[00:16:04] 1.3 Hardware and System Architecture Challenges

[00:23:37] 1.4 Enterprise AI Implementation and Optimization

[00:35:30] 1.5 AI Reasoning Capabilities and Limitations

2. AI System Development

[00:38:45] 2.1 Computational and Cognitive Limitations of AI Systems

[00:42:40] 2.2 Human-LLM Communication Adaptation and Patterns

[00:46:18] 2.3 AI-Assisted Software Development Challenges

[00:47:55] 2.4 Future of Software Engineering Careers in AI Era

[00:49:49] 2.5 Enterprise AI Adoption Challenges and Implementation

3. ML Infrastructure Optimization

[00:54:41] 3.1 MLOps Evolution and Platform Centralization

[00:55:43] 3.2 Hardware Optimization and Performance Constraints

[01:05:24] 3.3 ML Compiler Optimization and Python Performance

[01:15:57] 3.4 Enterprise ML Deployment and Cloud Provider Partnerships

4. Distributed AI Architecture

[01:27:05] 4.1 Multi-Cloud ML Infrastructure and Optimization

[01:29:45] 4.2 AI Agent Systems and Production Readiness

[01:32:00] 4.3 RAG Implementation and Fine-Tuning Considerations

[01:33:45] 4.4 Distributed AI Systems Architecture and Ray Framework

5. AI Industry Standards and Research

[01:37:55] 5.1 Origins and Evolution of MLPerf Benchmarking

[01:43:15] 5.2 MLPerf Methodology and Industry Impact

[01:50:17] 5.3 Academic Research vs Industry Implementation in AI

[01:58:59] 5.4 AI Research History and Safety Concerns

  continue reading

193 에피소드

Artwork
icon공유
 
Manage episode 450014752 series 2803422
Machine Learning Street Talk (MLST)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Machine Learning Street Talk (MLST) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Prof. Gennady Pekhimenko (CEO of CentML, UofT) joins us in this *sponsored episode* to dive deep into AI system optimization and enterprise implementation. From NVIDIA's technical leadership model to the rise of open-source AI, Pekhimenko shares insights on bridging the gap between academic research and industrial applications. Learn about "dark silicon," GPU utilization challenges in ML workloads, and how modern enterprises can optimize their AI infrastructure. The conversation explores why some companies achieve only 10% GPU efficiency and practical solutions for improving AI system performance. A must-watch for anyone interested in the technical foundations of enterprise AI and hardware optimization.

CentML offers competitive pricing for GenAI model deployment, with flexible options to suit a wide range of models, from small to large-scale deployments. Cheaper, faster, no commitments, pay as you go, scale massively, simple to setup. Check it out!

https://centml.ai/pricing/

SPONSOR MESSAGES:

MLST is also sponsored by Tufa AI Labs - https://tufalabs.ai/

They are hiring cracked ML engineers/researchers to work on ARC and build AGI!

SHOWNOTES (diarised transcript, TOC, references, summary, best quotes etc)

https://www.dropbox.com/scl/fi/w9kbpso7fawtm286kkp6j/Gennady.pdf?rlkey=aqjqmncx3kjnatk2il1gbgknk&st=2a9mccj8&dl=0

TOC:

1. AI Strategy and Leadership

[00:00:00] 1.1 Technical Leadership and Corporate Structure

[00:09:55] 1.2 Open Source vs Proprietary AI Models

[00:16:04] 1.3 Hardware and System Architecture Challenges

[00:23:37] 1.4 Enterprise AI Implementation and Optimization

[00:35:30] 1.5 AI Reasoning Capabilities and Limitations

2. AI System Development

[00:38:45] 2.1 Computational and Cognitive Limitations of AI Systems

[00:42:40] 2.2 Human-LLM Communication Adaptation and Patterns

[00:46:18] 2.3 AI-Assisted Software Development Challenges

[00:47:55] 2.4 Future of Software Engineering Careers in AI Era

[00:49:49] 2.5 Enterprise AI Adoption Challenges and Implementation

3. ML Infrastructure Optimization

[00:54:41] 3.1 MLOps Evolution and Platform Centralization

[00:55:43] 3.2 Hardware Optimization and Performance Constraints

[01:05:24] 3.3 ML Compiler Optimization and Python Performance

[01:15:57] 3.4 Enterprise ML Deployment and Cloud Provider Partnerships

4. Distributed AI Architecture

[01:27:05] 4.1 Multi-Cloud ML Infrastructure and Optimization

[01:29:45] 4.2 AI Agent Systems and Production Readiness

[01:32:00] 4.3 RAG Implementation and Fine-Tuning Considerations

[01:33:45] 4.4 Distributed AI Systems Architecture and Ray Framework

5. AI Industry Standards and Research

[01:37:55] 5.1 Origins and Evolution of MLPerf Benchmarking

[01:43:15] 5.2 MLPerf Methodology and Industry Impact

[01:50:17] 5.3 Academic Research vs Industry Implementation in AI

[01:58:59] 5.4 AI Research History and Safety Concerns

  continue reading

193 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드