Artwork

Machine Learning Street Talk (MLST)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Machine Learning Street Talk (MLST) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Ashley Edwards - Genie Paper (DeepMind/Runway)

25:04
 
공유
 

Manage episode 439764172 series 2803422
Machine Learning Street Talk (MLST)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Machine Learning Street Talk (MLST) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Ashley Edwards, who was working at DeepMind when she co-authored the Genie paper and is now at Runway, covered several key aspects of the Genie AI system and its applications in video generation, robotics, and game creation.

MLST is sponsored by Brave:

The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmentated generation. Try it now - get 2,000 free queries monthly at http://brave.com/api.

Genie's approach to learning interactive environments, balancing compression and fidelity.

The use of latent action models and VQE models for video processing and tokenization.

Challenges in maintaining action consistency across frames and integrating text-to-image models.

Evaluation metrics for AI-generated content, such as FID and PS&R diff metrics.

The discussion also explored broader implications and applications:

The potential impact of AI video generation on content creation jobs.

Applications of Genie in game generation and robotics.

The use of foundation models in robotics and the differences between internet video data and specialized robotics data.

Challenges in mapping AI-generated actions to real-world robotic actions.

Ashley Edwards: https://ashedwards.github.io/

TOC (*) are best bits

00:00:00 1. Intro to Genie & Brave Search API: Trade-offs & limitations *

00:02:26 2. Genie's Architecture: Latent action, VQE, video processing *

00:05:06 3. Genie's Constraints: Frame consistency & image model integration

00:07:26 4. Evaluation: FID, PS&R diff metrics & latent induction methods

00:09:44 5. AI Video Gen: Content creation impact, depth & parallax effects

00:11:39 6. Model Scaling: Training data impact & computational trade-offs

00:13:50 7. Game & Robotics Apps: Gamification & action mapping challenges *

00:16:16 8. Robotics Foundation Models: Action space & data considerations *

00:19:18 9. Mask-GPT & Video Frames: Real-time optimization, RL from videos

00:20:34 10. Research Challenges: AI value, efficiency vs. quality, safety

00:24:20 11. Future Dev: Efficiency improvements & fine-tuning strategies

Refs:

1. Genie (learning interactive environments from videos) / Ashley and DM collegues [00:01]

https://arxiv.org/abs/2402.15391

2. VQ-VAE (Vector Quantized Variational Autoencoder) / Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu [02:43]

https://arxiv.org/abs/1711.00937

3. FID (Fréchet Inception Distance) metric / Martin Heusel et al. [07:37]

https://arxiv.org/abs/1706.08500

4. PS&R (Precision and Recall) metric / Mehdi S. M. Sajjadi et al. [08:02]

https://arxiv.org/abs/1806.00035

5. Vision Transformer (ViT) architecture / Alexey Dosovitskiy et al. [12:14]

https://arxiv.org/abs/2010.11929

6. Genie (robotics foundation models) / Google DeepMind [17:34]

https://deepmind.google/research/publications/60474/

7. Chelsea Finn's lab work on robotics datasets / Chelsea Finn [17:38]

https://ai.stanford.edu/~cbfinn/

8. Imitation from observation in reinforcement learning / YuXuan Liu [20:58]

https://arxiv.org/abs/1707.03374

9. Waymo's autonomous driving technology / Waymo [22:38]

https://waymo.com/

10. Gen3 model release by Runway / Runway [23:48]

https://runwayml.com/

11. Classifier-free guidance technique / Jonathan Ho and Tim Salimans [24:43]

https://arxiv.org/abs/2207.12598

  continue reading

193 에피소드

Artwork
icon공유
 
Manage episode 439764172 series 2803422
Machine Learning Street Talk (MLST)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Machine Learning Street Talk (MLST) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Ashley Edwards, who was working at DeepMind when she co-authored the Genie paper and is now at Runway, covered several key aspects of the Genie AI system and its applications in video generation, robotics, and game creation.

MLST is sponsored by Brave:

The Brave Search API covers over 20 billion webpages, built from scratch without Big Tech biases or the recent extortionate price hikes on search API access. Perfect for AI model training and retrieval augmentated generation. Try it now - get 2,000 free queries monthly at http://brave.com/api.

Genie's approach to learning interactive environments, balancing compression and fidelity.

The use of latent action models and VQE models for video processing and tokenization.

Challenges in maintaining action consistency across frames and integrating text-to-image models.

Evaluation metrics for AI-generated content, such as FID and PS&R diff metrics.

The discussion also explored broader implications and applications:

The potential impact of AI video generation on content creation jobs.

Applications of Genie in game generation and robotics.

The use of foundation models in robotics and the differences between internet video data and specialized robotics data.

Challenges in mapping AI-generated actions to real-world robotic actions.

Ashley Edwards: https://ashedwards.github.io/

TOC (*) are best bits

00:00:00 1. Intro to Genie & Brave Search API: Trade-offs & limitations *

00:02:26 2. Genie's Architecture: Latent action, VQE, video processing *

00:05:06 3. Genie's Constraints: Frame consistency & image model integration

00:07:26 4. Evaluation: FID, PS&R diff metrics & latent induction methods

00:09:44 5. AI Video Gen: Content creation impact, depth & parallax effects

00:11:39 6. Model Scaling: Training data impact & computational trade-offs

00:13:50 7. Game & Robotics Apps: Gamification & action mapping challenges *

00:16:16 8. Robotics Foundation Models: Action space & data considerations *

00:19:18 9. Mask-GPT & Video Frames: Real-time optimization, RL from videos

00:20:34 10. Research Challenges: AI value, efficiency vs. quality, safety

00:24:20 11. Future Dev: Efficiency improvements & fine-tuning strategies

Refs:

1. Genie (learning interactive environments from videos) / Ashley and DM collegues [00:01]

https://arxiv.org/abs/2402.15391

2. VQ-VAE (Vector Quantized Variational Autoencoder) / Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu [02:43]

https://arxiv.org/abs/1711.00937

3. FID (Fréchet Inception Distance) metric / Martin Heusel et al. [07:37]

https://arxiv.org/abs/1706.08500

4. PS&R (Precision and Recall) metric / Mehdi S. M. Sajjadi et al. [08:02]

https://arxiv.org/abs/1806.00035

5. Vision Transformer (ViT) architecture / Alexey Dosovitskiy et al. [12:14]

https://arxiv.org/abs/2010.11929

6. Genie (robotics foundation models) / Google DeepMind [17:34]

https://deepmind.google/research/publications/60474/

7. Chelsea Finn's lab work on robotics datasets / Chelsea Finn [17:38]

https://ai.stanford.edu/~cbfinn/

8. Imitation from observation in reinforcement learning / YuXuan Liu [20:58]

https://arxiv.org/abs/1707.03374

9. Waymo's autonomous driving technology / Waymo [22:38]

https://waymo.com/

10. Gen3 model release by Runway / Runway [23:48]

https://runwayml.com/

11. Classifier-free guidance technique / Jonathan Ho and Tim Salimans [24:43]

https://arxiv.org/abs/2207.12598

  continue reading

193 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드