Artwork

Claire Vo에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Claire Vo 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Evals, error analysis, and better prompts: A systematic approach to improving your AI products | Hamel Husain (ML engineer)

54:48
 
공유
 

Manage episode 513351967 series 3660816
Claire Vo에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Claire Vo 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Hamel Husain, an AI consultant and educator, shares his systematic approach to improving AI product quality through error analysis, evaluation frameworks, and prompt engineering. In this episode, he demonstrates how product teams can move beyond “vibe checking” their AI systems to implement data-driven quality improvement processes that identify and fix the most common errors. Using real examples from client work with Nurture Boss (an AI assistant for property managers), Hamel walks through practical techniques that product managers can implement immediately to dramatically improve their AI products.

What you’ll learn:

1. A step-by-step error analysis framework that helps identify and categorize the most common AI failures in your product

2. How to create custom annotation systems that make reviewing AI conversations faster and more insightful

3. Why binary evaluations (pass/fail) are more useful than arbitrary quality scores for measuring AI performance

4. Techniques for validating your LLM judges to ensure they align with human quality expectations

5. A practical approach to prioritizing fixes based on frequency counting rather than intuition

6. Why looking at real user conversations (not just ideal test cases) is critical for understanding AI product failures

7. How to build a comprehensive quality system that spans from manual review to automated evaluation

Brought to you by:

GoFundMe Giving Funds—One account. Zero hassle: https://gofundme.com/howiai

Persona—Trusted identity verification for any use case: https://withpersona.com/lp/howiai

Where to find Hamel Husain:

Website: https://hamel.dev/

Twitter: https://twitter.com/HamelHusain

Course: https://maven.com/parlance-labs/evals

GitHub: https://github.com/hamelsmu

Where to find Claire Vo:

ChatPRD: https://www.chatprd.ai/

Website: https://clairevo.com/

LinkedIn: https://www.linkedin.com/in/clairevo/

X: https://x.com/clairevo

In this episode, we cover:

(00:00) Introduction to Hamel Husain

(03:05) The fundamentals: why data analysis is critical for AI products

(06:58) Understanding traces and examining real user interactions

(13:35) Error analysis: a systematic approach to finding AI failures

(17:40) Creating custom annotation systems for faster review

(22:23) The impact of this process

(25:15) Different types of evaluations

(29:30) LLM-as-a-Judge

(33:58) Improving prompts and system instructions

(38:15) Analyzing agent workflows

(40:38) Hamel’s personal AI tools and workflows

(48:02) Lighting round and final thoughts

Tools referenced:

• Claude: https://claude.ai/

• Braintrust: https://www.braintrust.dev/docs/start

• Phoenix: https://phoenix.arize.com/

• AI Studio: https://aistudio.google.com/

• ChatGPT: https://chat.openai.com/

• Gemini: https://gemini.google.com/

Other references:

• Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences: https://dl.acm.org/doi/10.1145/3654777.3676450

• Nurture Boss: https://nurtureboss.io

• Rechat: https://rechat.com/

• Your AI Product Needs Evals: https://hamel.dev/blog/posts/evals/

• A Field Guide to Rapidly Improving AI Products: https://hamel.dev/blog/posts/field-guide/

• Creating a LLM-as-a-Judge That Drives Business Results: https://hamel.dev/blog/posts/llm-judge/

• Lenny’s List on Maven: https://maven.com/lenny

Production and marketing by https://penname.co/. For inquiries about sponsoring the podcast, email [email protected].

  continue reading

42 에피소드

Artwork
icon공유
 
Manage episode 513351967 series 3660816
Claire Vo에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Claire Vo 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Hamel Husain, an AI consultant and educator, shares his systematic approach to improving AI product quality through error analysis, evaluation frameworks, and prompt engineering. In this episode, he demonstrates how product teams can move beyond “vibe checking” their AI systems to implement data-driven quality improvement processes that identify and fix the most common errors. Using real examples from client work with Nurture Boss (an AI assistant for property managers), Hamel walks through practical techniques that product managers can implement immediately to dramatically improve their AI products.

What you’ll learn:

1. A step-by-step error analysis framework that helps identify and categorize the most common AI failures in your product

2. How to create custom annotation systems that make reviewing AI conversations faster and more insightful

3. Why binary evaluations (pass/fail) are more useful than arbitrary quality scores for measuring AI performance

4. Techniques for validating your LLM judges to ensure they align with human quality expectations

5. A practical approach to prioritizing fixes based on frequency counting rather than intuition

6. Why looking at real user conversations (not just ideal test cases) is critical for understanding AI product failures

7. How to build a comprehensive quality system that spans from manual review to automated evaluation

Brought to you by:

GoFundMe Giving Funds—One account. Zero hassle: https://gofundme.com/howiai

Persona—Trusted identity verification for any use case: https://withpersona.com/lp/howiai

Where to find Hamel Husain:

Website: https://hamel.dev/

Twitter: https://twitter.com/HamelHusain

Course: https://maven.com/parlance-labs/evals

GitHub: https://github.com/hamelsmu

Where to find Claire Vo:

ChatPRD: https://www.chatprd.ai/

Website: https://clairevo.com/

LinkedIn: https://www.linkedin.com/in/clairevo/

X: https://x.com/clairevo

In this episode, we cover:

(00:00) Introduction to Hamel Husain

(03:05) The fundamentals: why data analysis is critical for AI products

(06:58) Understanding traces and examining real user interactions

(13:35) Error analysis: a systematic approach to finding AI failures

(17:40) Creating custom annotation systems for faster review

(22:23) The impact of this process

(25:15) Different types of evaluations

(29:30) LLM-as-a-Judge

(33:58) Improving prompts and system instructions

(38:15) Analyzing agent workflows

(40:38) Hamel’s personal AI tools and workflows

(48:02) Lighting round and final thoughts

Tools referenced:

• Claude: https://claude.ai/

• Braintrust: https://www.braintrust.dev/docs/start

• Phoenix: https://phoenix.arize.com/

• AI Studio: https://aistudio.google.com/

• ChatGPT: https://chat.openai.com/

• Gemini: https://gemini.google.com/

Other references:

• Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences: https://dl.acm.org/doi/10.1145/3654777.3676450

• Nurture Boss: https://nurtureboss.io

• Rechat: https://rechat.com/

• Your AI Product Needs Evals: https://hamel.dev/blog/posts/evals/

• A Field Guide to Rapidly Improving AI Products: https://hamel.dev/blog/posts/field-guide/

• Creating a LLM-as-a-Judge That Drives Business Results: https://hamel.dev/blog/posts/llm-judge/

• Lenny’s List on Maven: https://maven.com/lenny

Production and marketing by https://penname.co/. For inquiries about sponsoring the podcast, email [email protected].

  continue reading

42 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생