Artwork

Lukas Biewald에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Lukas Biewald 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Advanced AI Accelerators and Processors with Andrew Feldman of Cerebras Systems

1:00:10
 
공유
 

Manage episode 366800064 series 2973389
Lukas Biewald에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Lukas Biewald 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

On this episode, we’re joined by Andrew Feldman, Founder and CEO of Cerebras Systems. Andrew and the Cerebras team are responsible for building the largest-ever computer chip and the fastest AI-specific processor in the industry.

We discuss:

- The advantages of using large chips for AI work.

- Cerebras Systems’ process for building chips optimized for AI.

- Why traditional GPUs aren’t the optimal machines for AI work.

- Why efficiently distributing computing resources is a significant challenge for AI work.

- How much faster Cerebras Systems’ machines are than other processors on the market.

- Reasons why some ML-specific chip companies fail and what Cerebras does differently.

- Unique challenges for chip makers and hardware companies.

- Cooling and heat-transfer techniques for Cerebras machines.

- How Cerebras approaches building chips that will fit the needs of customers for years to come.

- Why the strategic vision for what data to collect for ML needs more discussion.

Resources:

Andrew Feldman - https://www.linkedin.com/in/andrewdfeldman/

Cerebras Systems - https://www.linkedin.com/company/cerebras-systems/

Cerebras Systems | Website - https://www.cerebras.net/

Thanks for listening to the Gradient Dissent podcast, brought to you by Weights & Biases. If you enjoyed this episode, please leave a review to help get the word out about the show. And be sure to subscribe so you never miss another insightful conversation.

#OCR #DeepLearning #AI #Modeling #ML

  continue reading

128 에피소드

Artwork
icon공유
 
Manage episode 366800064 series 2973389
Lukas Biewald에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Lukas Biewald 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

On this episode, we’re joined by Andrew Feldman, Founder and CEO of Cerebras Systems. Andrew and the Cerebras team are responsible for building the largest-ever computer chip and the fastest AI-specific processor in the industry.

We discuss:

- The advantages of using large chips for AI work.

- Cerebras Systems’ process for building chips optimized for AI.

- Why traditional GPUs aren’t the optimal machines for AI work.

- Why efficiently distributing computing resources is a significant challenge for AI work.

- How much faster Cerebras Systems’ machines are than other processors on the market.

- Reasons why some ML-specific chip companies fail and what Cerebras does differently.

- Unique challenges for chip makers and hardware companies.

- Cooling and heat-transfer techniques for Cerebras machines.

- How Cerebras approaches building chips that will fit the needs of customers for years to come.

- Why the strategic vision for what data to collect for ML needs more discussion.

Resources:

Andrew Feldman - https://www.linkedin.com/in/andrewdfeldman/

Cerebras Systems - https://www.linkedin.com/company/cerebras-systems/

Cerebras Systems | Website - https://www.cerebras.net/

Thanks for listening to the Gradient Dissent podcast, brought to you by Weights & Biases. If you enjoyed this episode, please leave a review to help get the word out about the show. And be sure to subscribe so you never miss another insightful conversation.

#OCR #DeepLearning #AI #Modeling #ML

  continue reading

128 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생