Artwork

CFA Institute Research Foundation에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 CFA Institute Research Foundation 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Mark Kritzman on Relevance-Based Prediction, An Alternative to Machine Learning

1:02:50
 
공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on October 10, 2024 08:05 (28d ago). Last successful fetch was on July 26, 2024 20:36 (3M ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 421471367 series 3557118
CFA Institute Research Foundation에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 CFA Institute Research Foundation 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Mark joins host Lotta Moberg to discuss relevance-based prediction, a transparent and adaptive alternative to machine learning.

Mark Kritzman, CFA is a Founding Partner and CEO of Windham Capital Management, LLC. He is also a Founding Partner of State Street Associates, and he teaches a graduate finance course at the Massachusetts Institute of Technology.

Mark served as a Founding Director of the International Securities Exchange and as a Commissioner on the Group Insurance Commission of the Commonwealth of Massachusetts. He also served on the Advisory Board of the Government Investment Corporation of Singapore (GIC) and the boards of the Institute for Quantitative Research in Finance, The Investment Fund for Foundations, and State Street Associates.

He is currently a member of the Advisory Board of the MIT Sloan Finance Group, the Board of Trustees of St. John’s University, the Emerging Markets Review, the Journal of Alternative Investments, the Journal of Derivatives, the Journal of Investment Management, where he is Book Review Editor, and The Journal of Portfolio Management.

Relevance-based prediction is a new approach to data driven forecasting which serves as a favorable alternative to both linear regression analysis and machine learning. In this episode, Mark Kritzman, one of the leading researchers in this field, joins us to discuss the seminal scientific innovations underlying this approach to predictions, namely the Prasanta Mahalanobis’ distance measure and Claude Shannon’s information theory.

We also discuss the three key tenets of relevance-based prediction, that of relevance, which measures the importance of an observation to a prediction, fit, which measures the reliability of each individual prediction task, and codependence, which holds that the choice of observations and predictive variables should be determined jointly for each individual prediction task. Get ready for a highly educational, stimulating, and demanding episode!

To review Mark's work for yourself, use the links below:

JOIM paper (Relevance)

https://globalmarkets.statestreet.com/research/portal/insights/article/5985847c-60d8-418a-9334-5838b009058f

JFDS paper (Relevance-Based Prediction)

https://globalmarkets.statestreet.com/research/portal/insights/article/7c6fcbd8-8ed3-4c84-b722-d2d24d99c082

To purchase a copy of his book, use the links below:

https://www.predictionrevisited.com/

https://www.wiley.com/en-us/Prediction+Revisited%3A+The+Importance+of+Observation-p-9781119895596

Financial Thought Exchange is the official podcast and video channel of the CFA Institute Research Foundation. If you would like to support the show and our work, please donate here: https://rpc.cfainstitute.org/en/research-foundation/donate

  continue reading

15 에피소드

Artwork
icon공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on October 10, 2024 08:05 (28d ago). Last successful fetch was on July 26, 2024 20:36 (3M ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 421471367 series 3557118
CFA Institute Research Foundation에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 CFA Institute Research Foundation 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Mark joins host Lotta Moberg to discuss relevance-based prediction, a transparent and adaptive alternative to machine learning.

Mark Kritzman, CFA is a Founding Partner and CEO of Windham Capital Management, LLC. He is also a Founding Partner of State Street Associates, and he teaches a graduate finance course at the Massachusetts Institute of Technology.

Mark served as a Founding Director of the International Securities Exchange and as a Commissioner on the Group Insurance Commission of the Commonwealth of Massachusetts. He also served on the Advisory Board of the Government Investment Corporation of Singapore (GIC) and the boards of the Institute for Quantitative Research in Finance, The Investment Fund for Foundations, and State Street Associates.

He is currently a member of the Advisory Board of the MIT Sloan Finance Group, the Board of Trustees of St. John’s University, the Emerging Markets Review, the Journal of Alternative Investments, the Journal of Derivatives, the Journal of Investment Management, where he is Book Review Editor, and The Journal of Portfolio Management.

Relevance-based prediction is a new approach to data driven forecasting which serves as a favorable alternative to both linear regression analysis and machine learning. In this episode, Mark Kritzman, one of the leading researchers in this field, joins us to discuss the seminal scientific innovations underlying this approach to predictions, namely the Prasanta Mahalanobis’ distance measure and Claude Shannon’s information theory.

We also discuss the three key tenets of relevance-based prediction, that of relevance, which measures the importance of an observation to a prediction, fit, which measures the reliability of each individual prediction task, and codependence, which holds that the choice of observations and predictive variables should be determined jointly for each individual prediction task. Get ready for a highly educational, stimulating, and demanding episode!

To review Mark's work for yourself, use the links below:

JOIM paper (Relevance)

https://globalmarkets.statestreet.com/research/portal/insights/article/5985847c-60d8-418a-9334-5838b009058f

JFDS paper (Relevance-Based Prediction)

https://globalmarkets.statestreet.com/research/portal/insights/article/7c6fcbd8-8ed3-4c84-b722-d2d24d99c082

To purchase a copy of his book, use the links below:

https://www.predictionrevisited.com/

https://www.wiley.com/en-us/Prediction+Revisited%3A+The+Importance+of+Observation-p-9781119895596

Financial Thought Exchange is the official podcast and video channel of the CFA Institute Research Foundation. If you would like to support the show and our work, please donate here: https://rpc.cfainstitute.org/en/research-foundation/donate

  continue reading

15 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드