Artwork

Active Motif에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Active Motif 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Genome-Wide Investigation of Epigenetic Marks and Nucleosome Positioning (Keji Zhao)

31:33
 
공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on September 02, 2022 22:36 (1+ y ago). Last successful fetch was on July 28, 2022 16:40 (1+ y ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 284105990 series 2369335
Active Motif에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Active Motif 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of the Epigenetics Podcast, we caught up with Dr. Keji Zhao from the National Heart, Lung, and Blood Institute at the National Institutes of Health in Bethesda, MD, to talk about his work on the genome-wide investigation of epigenetic marks and nucleosome positioning.

Dr. Keji Zhao pioneered in the development of cutting-edge techniques in the field of epigenetics. Current methods at that time relied on DNA microarrays, however, Dr. Zhao wanted a more comprehensive and unbiased approach that would avoid the shortfalls of these array-based methods. Hence, he set out to develop new sequencing-based methods like ChIP-Seq and MNase-Seq with accompanying computational methods to analyze the huge amount of sequencing data that would be generated.

Using the above-mentioned techniques, Dr. Zhao was able to show that histone deacetylases (HDACs) and histone acetyltransferases (HATs) were found at inactive and active genes, respectively, as previously thought. Surprisingly, he was also able to show that HDACs were also located at active genes. Furthermore, both, HATs and HDACs can be found at low levels at silenced genes.

In this episode we discuss the story behind how Dr. Keji Zhao was one of the pioneers of the chromatin immunoprecipitation technology, how he discovered the genomic locations of HATs and HDACs, and in the end he shares some tips and tricks on how to get the best results in ChIP-Seq assays.

References

  • Artem Barski, Suresh Cuddapah, … Keji Zhao (2007) High-resolution profiling of histone methylations in the human genome (Cell) DOI: 10.1016/j.cell.2007.05.009
  • Dustin E. Schones, Kairong Cui, … Keji Zhao (2008) Dynamic regulation of nucleosome positioning in the human genome (Cell) DOI: 10.1016/j.cell.2008.02.022
  • Zhibin Wang, Chongzhi Zang, … Keji Zhao (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes (Cell) DOI: 10.1016/j.cell.2009.06.049
  • Wenfei Jin, Qingsong Tang, … Keji Zhao (2015) Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples (Nature) DOI: 10.1038/nature15740
  • Binbin Lai, Weiwu Gao, … Keji Zhao (2018) Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing (Nature) DOI: 10.1038/s41586-018-0567-3

Related Episodes

Contact

  continue reading

80 에피소드

Artwork
icon공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on September 02, 2022 22:36 (1+ y ago). Last successful fetch was on July 28, 2022 16:40 (1+ y ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 284105990 series 2369335
Active Motif에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Active Motif 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of the Epigenetics Podcast, we caught up with Dr. Keji Zhao from the National Heart, Lung, and Blood Institute at the National Institutes of Health in Bethesda, MD, to talk about his work on the genome-wide investigation of epigenetic marks and nucleosome positioning.

Dr. Keji Zhao pioneered in the development of cutting-edge techniques in the field of epigenetics. Current methods at that time relied on DNA microarrays, however, Dr. Zhao wanted a more comprehensive and unbiased approach that would avoid the shortfalls of these array-based methods. Hence, he set out to develop new sequencing-based methods like ChIP-Seq and MNase-Seq with accompanying computational methods to analyze the huge amount of sequencing data that would be generated.

Using the above-mentioned techniques, Dr. Zhao was able to show that histone deacetylases (HDACs) and histone acetyltransferases (HATs) were found at inactive and active genes, respectively, as previously thought. Surprisingly, he was also able to show that HDACs were also located at active genes. Furthermore, both, HATs and HDACs can be found at low levels at silenced genes.

In this episode we discuss the story behind how Dr. Keji Zhao was one of the pioneers of the chromatin immunoprecipitation technology, how he discovered the genomic locations of HATs and HDACs, and in the end he shares some tips and tricks on how to get the best results in ChIP-Seq assays.

References

  • Artem Barski, Suresh Cuddapah, … Keji Zhao (2007) High-resolution profiling of histone methylations in the human genome (Cell) DOI: 10.1016/j.cell.2007.05.009
  • Dustin E. Schones, Kairong Cui, … Keji Zhao (2008) Dynamic regulation of nucleosome positioning in the human genome (Cell) DOI: 10.1016/j.cell.2008.02.022
  • Zhibin Wang, Chongzhi Zang, … Keji Zhao (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes (Cell) DOI: 10.1016/j.cell.2009.06.049
  • Wenfei Jin, Qingsong Tang, … Keji Zhao (2015) Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples (Nature) DOI: 10.1038/nature15740
  • Binbin Lai, Weiwu Gao, … Keji Zhao (2018) Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing (Nature) DOI: 10.1038/s41586-018-0567-3

Related Episodes

Contact

  continue reading

80 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드