Artwork

Active Motif에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Active Motif 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

ATAC-Seq, scATAC-Seq and Chromatin Dynamics in Single-Cells (Jason Buenrostro)

47:37
 
공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on September 02, 2022 22:36 (1+ y ago). Last successful fetch was on July 28, 2022 16:40 (1+ y ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 298050711 series 2369335
Active Motif에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Active Motif 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of the Epigenetics Podcast, we caught up with Jason Buenrostro from Harvard University to talk about his work on developing biological tools to measure chromatin dynamics in single-cells. He explains how his lab uses these tools to study chromatin alterations in different cell types and disease states to uncover new mechanisms of gene regulation and their contribution to those diseases.

In his first years of his research career Jason Buenrostro took a risk and just added an enzyme called Transposase to cells in a cell culture. What he saw on a subsequent agarose gel astonished him. He was able to recreate a nucleosomal ladder that he knew from experiments using MNase or DNase-Seq, however, without the tedious steps of optimization. In the following years he optimized that method and data analyzation into a method known today as ATAC-Seq. In recent years he was also able to bring ATAC-Seq to the next level and developed single cell ATAC-Seq (scATAC-Seq), and combining it with RNA-Seq in a multi-omics approach.

In this Episode we discuss how Jason Buenrostro developed ATAC-Seq in William Greenleaf's lab, how a lack of equipment shaped the ATAC-Seq protocol, and how scATAC-Seq has enabled a whole different way of looking at biological samples.

References

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10(12), 1213–1218. https://doi.org/10.1038/nmeth.2688

  • Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., Chang, H. Y., & Greenleaf, W. J. (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523(7561), 486–490. https://doi.org/10.1038/nature14590

  • Buenrostro, J. D., Corces, M. R., Lareau, C. A., Wu, B., Schep, A. N., Aryee, M. J., Majeti, R., Chang, H. Y., & Greenleaf, W. J. (2018). Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell, 173(6), 1535-1548.e16. https://doi.org/10.1016/j.cell.2018.03.074

  • Lareau, C. A., Duarte, F. M., Chew, J. G., Kartha, V. K., Burkett, Z. D., Kohlway, A. S., Pokholok, D., Aryee, M. J., Steemers, F. J., Lebofsky, R., & Buenrostro, J. D. (2019). Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nature Biotechnology, 37(8), 916–924. https://doi.org/10.1038/s41587-019-0147-6

Related Episodes

Contact

  continue reading

80 에피소드

Artwork
icon공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on September 02, 2022 22:36 (1+ y ago). Last successful fetch was on July 28, 2022 16:40 (1+ y ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 298050711 series 2369335
Active Motif에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Active Motif 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of the Epigenetics Podcast, we caught up with Jason Buenrostro from Harvard University to talk about his work on developing biological tools to measure chromatin dynamics in single-cells. He explains how his lab uses these tools to study chromatin alterations in different cell types and disease states to uncover new mechanisms of gene regulation and their contribution to those diseases.

In his first years of his research career Jason Buenrostro took a risk and just added an enzyme called Transposase to cells in a cell culture. What he saw on a subsequent agarose gel astonished him. He was able to recreate a nucleosomal ladder that he knew from experiments using MNase or DNase-Seq, however, without the tedious steps of optimization. In the following years he optimized that method and data analyzation into a method known today as ATAC-Seq. In recent years he was also able to bring ATAC-Seq to the next level and developed single cell ATAC-Seq (scATAC-Seq), and combining it with RNA-Seq in a multi-omics approach.

In this Episode we discuss how Jason Buenrostro developed ATAC-Seq in William Greenleaf's lab, how a lack of equipment shaped the ATAC-Seq protocol, and how scATAC-Seq has enabled a whole different way of looking at biological samples.

References

  • Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10(12), 1213–1218. https://doi.org/10.1038/nmeth.2688

  • Buenrostro, J. D., Wu, B., Litzenburger, U. M., Ruff, D., Gonzales, M. L., Snyder, M. P., Chang, H. Y., & Greenleaf, W. J. (2015). Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 523(7561), 486–490. https://doi.org/10.1038/nature14590

  • Buenrostro, J. D., Corces, M. R., Lareau, C. A., Wu, B., Schep, A. N., Aryee, M. J., Majeti, R., Chang, H. Y., & Greenleaf, W. J. (2018). Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell, 173(6), 1535-1548.e16. https://doi.org/10.1016/j.cell.2018.03.074

  • Lareau, C. A., Duarte, F. M., Chew, J. G., Kartha, V. K., Burkett, Z. D., Kohlway, A. S., Pokholok, D., Aryee, M. J., Steemers, F. J., Lebofsky, R., & Buenrostro, J. D. (2019). Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nature Biotechnology, 37(8), 916–924. https://doi.org/10.1038/s41587-019-0147-6

Related Episodes

Contact

  continue reading

80 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드