Artwork

EDGE AI FOUNDATION에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 EDGE AI FOUNDATION 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Stochastic Training for Side-Channel Resilient AI

18:57
 
공유
 

Manage episode 508032090 series 3574631
EDGE AI FOUNDATION에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 EDGE AI FOUNDATION 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Protecting valuable AI models from theft is becoming a critical concern as more computation moves to edge devices. This fascinating exploration reveals how sophisticated attackers can extract proprietary neural networks directly from hardware through side-channel attacks - not as theoretical possibilities, but as practical demonstrations on devices from major manufacturers including Nvidia, ARM, NXP, and Google's Coral TPUs.
The speakers present a novel approach to safeguarding existing hardware without requiring new chip designs or access to proprietary compilers. By leveraging the inherent randomness in neural network training, they demonstrate how training multiple versions of the same model and unpredictably switching between them during inference can significantly reduce vulnerability to these attacks.
Most impressively, they overcome the limitations of edge TPUs by cleverly repurposing ReLU activation functions to emulate conditional logic on hardware that lacks native support for control flow. This allows implementation of security measures on devices that would otherwise be impossible to modify. Their technique achieves approximately 50% reduction in side-channel leakage with minimal impact on model accuracy.
The presentation walks through the technical implementation details, showing how layer-wise parameter selection can provide quadratic security improvements compared to whole-model switching approaches. For anyone working with AI deployment on edge devices, this represents a critical advancement in protecting intellectual property and preventing system compromise through model extraction.
Try implementing this stochastic training approach on your edge AI systems today to enhance security against physical attacks. Your valuable AI models deserve protection as they move closer to end users and potentially hostile environments.

Send us a text

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

챕터

1. Introduction to AI Model Theft (00:00:00)

2. Security Challenges of Existing Devices (00:00:52)

3. Approach to Secure Edge TPUs (00:01:35)

4. Neural Network Training Fundamentals (00:04:29)

5. Proposed Security Solution (00:07:43)

6. Building If-Else with ReLU (00:10:36)

7. Layer-wise Model Selection (00:13:10)

8. Testing and Results (00:16:33)

9. Conclusion and Future Directions (00:18:40)

60 에피소드

Artwork
icon공유
 
Manage episode 508032090 series 3574631
EDGE AI FOUNDATION에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 EDGE AI FOUNDATION 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Protecting valuable AI models from theft is becoming a critical concern as more computation moves to edge devices. This fascinating exploration reveals how sophisticated attackers can extract proprietary neural networks directly from hardware through side-channel attacks - not as theoretical possibilities, but as practical demonstrations on devices from major manufacturers including Nvidia, ARM, NXP, and Google's Coral TPUs.
The speakers present a novel approach to safeguarding existing hardware without requiring new chip designs or access to proprietary compilers. By leveraging the inherent randomness in neural network training, they demonstrate how training multiple versions of the same model and unpredictably switching between them during inference can significantly reduce vulnerability to these attacks.
Most impressively, they overcome the limitations of edge TPUs by cleverly repurposing ReLU activation functions to emulate conditional logic on hardware that lacks native support for control flow. This allows implementation of security measures on devices that would otherwise be impossible to modify. Their technique achieves approximately 50% reduction in side-channel leakage with minimal impact on model accuracy.
The presentation walks through the technical implementation details, showing how layer-wise parameter selection can provide quadratic security improvements compared to whole-model switching approaches. For anyone working with AI deployment on edge devices, this represents a critical advancement in protecting intellectual property and preventing system compromise through model extraction.
Try implementing this stochastic training approach on your edge AI systems today to enhance security against physical attacks. Your valuable AI models deserve protection as they move closer to end users and potentially hostile environments.

Send us a text

Support the show

Learn more about the EDGE AI FOUNDATION - edgeaifoundation.org

  continue reading

챕터

1. Introduction to AI Model Theft (00:00:00)

2. Security Challenges of Existing Devices (00:00:52)

3. Approach to Secure Edge TPUs (00:01:35)

4. Neural Network Training Fundamentals (00:04:29)

5. Proposed Security Solution (00:07:43)

6. Building If-Else with ReLU (00:10:36)

7. Layer-wise Model Selection (00:13:10)

8. Testing and Results (00:16:33)

9. Conclusion and Future Directions (00:18:40)

60 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생