Artwork

HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Why You Shouldn’t Judge by PnL Alone

13:23
 
공유
 

Manage episode 508239245 series 3474670
HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/why-you-shouldnt-judge-by-pnl-alone.
PnL can lie. This hands-on guide shows traders how hypothesis testing separate luck from edge, with a Python example and tips on how not to fool yourself.
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #quantitative-research, #trading, #algorithmic-trading, #pnl, #udge-pnl, #profit-and-loss, #judge-profit-and-loss, #hackernoon-top-story, and more.
This story was written by: @ruslan4ezzz. Learn more about this writer by checking @ruslan4ezzz's about page, and for more stories, please visit hackernoon.com.
I’ve spent years building and evaluating systematic strategies across highly adversarial markets. When you iterate on a trading system, PnL is the goal but a terrible day-to-day signal. It’s too noisy, too path-dependent, and too easy to cherry-pick. A simple framework—form a hypothesis, measure a test statistic, translate it into a probability under a “no-effect” world (the p-value)—helps you avoid false wins, iterate faster, and ship changes that actually stick. Below I’ll show a concrete example where two strategies look very different in cumulative PnL charts, yet standard tests say there’s no meaningful difference in their average per-trade outcome. I’ll also demystify the t-test in plain language: difference of means, scaled by uncertainty.

  continue reading

137 에피소드

Artwork
icon공유
 
Manage episode 508239245 series 3474670
HackerNoon에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 HackerNoon 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/why-you-shouldnt-judge-by-pnl-alone.
PnL can lie. This hands-on guide shows traders how hypothesis testing separate luck from edge, with a Python example and tips on how not to fool yourself.
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #quantitative-research, #trading, #algorithmic-trading, #pnl, #udge-pnl, #profit-and-loss, #judge-profit-and-loss, #hackernoon-top-story, and more.
This story was written by: @ruslan4ezzz. Learn more about this writer by checking @ruslan4ezzz's about page, and for more stories, please visit hackernoon.com.
I’ve spent years building and evaluating systematic strategies across highly adversarial markets. When you iterate on a trading system, PnL is the goal but a terrible day-to-day signal. It’s too noisy, too path-dependent, and too easy to cherry-pick. A simple framework—form a hypothesis, measure a test statistic, translate it into a probability under a “no-effect” world (the p-value)—helps you avoid false wins, iterate faster, and ship changes that actually stick. Below I’ll show a concrete example where two strategies look very different in cumulative PnL charts, yet standard tests say there’s no meaningful difference in their average per-trade outcome. I’ll also demystify the t-test in plain language: difference of means, scaled by uncertainty.

  continue reading

137 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생