Artwork

Daryl Taylor에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Daryl Taylor 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Machine Learning Models: Fine-Tuning for Success

9:29
 
공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on February 10, 2025 12:10 (7M ago). Last successful fetch was on October 14, 2024 06:04 (11M ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444601107 series 3603581
Daryl Taylor에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Daryl Taylor 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode, we delve into a fascinating lecture about machine learning models and the challenges they face when they don’t perform as expected. Professor Eugene Ragi shares key techniques to fine-tune models, emphasizing the importance of data quality and feature engineering. The discussion explores ensemble learning, hyperparameters, and how intuition plays a critical role in the success of machine learning algorithms.

Key Points

  • [00:00] Professor Eugene Ragi begins by highlighting how machine learning models often fail due to poor data quality, stressing the importance of refining both the model and the data fed into it​.
  • [02:10] Emphasizes the necessity of data balancing. Using an example of health prediction models, Ragi discusses how imbalanced data can skew results, especially when there is far more data on healthy individuals than those who are sick​.
  • [04:30] Introduction to ensemble learning, which involves using multiple models that collaborate to solve the same problem. He likens this to a team of specialists, each with unique strengths, improving the overall prediction accuracy​.
  • [06:45] Professor Ragi warns that simply combining weak models doesn’t guarantee success. He stresses that for ensemble learning to work, the individual models must bring diverse perspectives, not just replicate the same approach​.
  • [08:15] A detailed explanation of hyperparameters follows. These are parameters set by the engineer before training begins, fine-tuning how a model learns. Ragi compares this process to adjusting the dials on a race car engine​.
  • [10:00] The professor introduces the role of optimizers, which guide the model through complex problem-solving. Different optimizers have their own strategies, and choosing the right one depends on the task at hand​.
  • [12:20] Ragi points out that model performance should always be judged in the context of its application. A 90% accuracy rate might be great for recommending movies but could be disastrous in medical diagnoses​.
  • [13:50] He introduces an unexpected element in machine learning: intuition. While models are data-driven, experience and intuition play a key role in selecting the right techniques and methods to solve specific problems​.

Additional Resources

  • Machine Learning Documentation: Link
  • Ensemble Learning Techniques: Link

CSE805L19

  continue reading

20 에피소드

Artwork
icon공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on February 10, 2025 12:10 (7M ago). Last successful fetch was on October 14, 2024 06:04 (11M ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444601107 series 3603581
Daryl Taylor에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Daryl Taylor 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode, we delve into a fascinating lecture about machine learning models and the challenges they face when they don’t perform as expected. Professor Eugene Ragi shares key techniques to fine-tune models, emphasizing the importance of data quality and feature engineering. The discussion explores ensemble learning, hyperparameters, and how intuition plays a critical role in the success of machine learning algorithms.

Key Points

  • [00:00] Professor Eugene Ragi begins by highlighting how machine learning models often fail due to poor data quality, stressing the importance of refining both the model and the data fed into it​.
  • [02:10] Emphasizes the necessity of data balancing. Using an example of health prediction models, Ragi discusses how imbalanced data can skew results, especially when there is far more data on healthy individuals than those who are sick​.
  • [04:30] Introduction to ensemble learning, which involves using multiple models that collaborate to solve the same problem. He likens this to a team of specialists, each with unique strengths, improving the overall prediction accuracy​.
  • [06:45] Professor Ragi warns that simply combining weak models doesn’t guarantee success. He stresses that for ensemble learning to work, the individual models must bring diverse perspectives, not just replicate the same approach​.
  • [08:15] A detailed explanation of hyperparameters follows. These are parameters set by the engineer before training begins, fine-tuning how a model learns. Ragi compares this process to adjusting the dials on a race car engine​.
  • [10:00] The professor introduces the role of optimizers, which guide the model through complex problem-solving. Different optimizers have their own strategies, and choosing the right one depends on the task at hand​.
  • [12:20] Ragi points out that model performance should always be judged in the context of its application. A 90% accuracy rate might be great for recommending movies but could be disastrous in medical diagnoses​.
  • [13:50] He introduces an unexpected element in machine learning: intuition. While models are data-driven, experience and intuition play a key role in selecting the right techniques and methods to solve specific problems​.

Additional Resources

  • Machine Learning Documentation: Link
  • Ensemble Learning Techniques: Link

CSE805L19

  continue reading

20 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생