Artwork

Daryl Taylor에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Daryl Taylor 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

CSE805L16 - Mastering Decision Trees in Python

12:04
 
공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on February 10, 2025 12:10 (10M ago). Last successful fetch was on October 14, 2024 06:04 (1y ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444159374 series 3603581
Daryl Taylor에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Daryl Taylor 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Episode Summary: In this episode, Eugene Uwiragiye dives deep into the concepts of decision trees, discussing how they are implemented in Python and their application in data science. This technical walkthrough provides a step-by-step demonstration of building and visualizing decision trees, discussing important techniques such as loading data from different file formats (CSV, JSON), handling missing data, and using functions like map(), apply(), and lambda() to manipulate data frames efficiently.

Key Takeaways:

  • Loading Data in Python: Learn how to load various data formats including CSV, JSON, and text files using Python functions.
  • Data Preprocessing: Understand how to convert categorical data into numerical values using techniques like Label Encoding and One Hot Encoding.
  • Decision Tree Basics: Eugene explains how decision trees function, starting from data input to how decisions are made based on conditions and branching logic.
  • Python Implementation: A live coding session on how to implement decision trees using Python libraries. Eugene explains the process of building, fitting, and visualizing a decision tree classifier.
  • Genie Index Calculation: Explore the method of calculating the Gini Index, an essential part of evaluating the splits in decision trees.
  • Practical Use Cases: A real-world example is discussed where a decision tree helps decide whether to attend a comedy show based on factors like the comedian’s age, experience, and nationality.

Tools & Libraries Mentioned:

  • Pandas: For handling dataframes and reading different file formats.
  • Scikit-learn: For implementing machine learning models like decision trees.
  • Matplotlib/Seaborn: For data visualization.

Memorable Quotes:

  • "If you forget the values you've assigned, you'll face problems when interpreting the results."
  • "We need to map these data points so that we can understand what decisions to make."

Resources for Further Learning:

  • Python Decision Trees Documentation
  • Understanding Gini Index

Episode Links:

  • Full Transcript
  • Python code examples discussed in the episode
  • Video version of the tutorial (if available)
  continue reading

20 에피소드

Artwork
icon공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on February 10, 2025 12:10 (10M ago). Last successful fetch was on October 14, 2024 06:04 (1y ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444159374 series 3603581
Daryl Taylor에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Daryl Taylor 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Episode Summary: In this episode, Eugene Uwiragiye dives deep into the concepts of decision trees, discussing how they are implemented in Python and their application in data science. This technical walkthrough provides a step-by-step demonstration of building and visualizing decision trees, discussing important techniques such as loading data from different file formats (CSV, JSON), handling missing data, and using functions like map(), apply(), and lambda() to manipulate data frames efficiently.

Key Takeaways:

  • Loading Data in Python: Learn how to load various data formats including CSV, JSON, and text files using Python functions.
  • Data Preprocessing: Understand how to convert categorical data into numerical values using techniques like Label Encoding and One Hot Encoding.
  • Decision Tree Basics: Eugene explains how decision trees function, starting from data input to how decisions are made based on conditions and branching logic.
  • Python Implementation: A live coding session on how to implement decision trees using Python libraries. Eugene explains the process of building, fitting, and visualizing a decision tree classifier.
  • Genie Index Calculation: Explore the method of calculating the Gini Index, an essential part of evaluating the splits in decision trees.
  • Practical Use Cases: A real-world example is discussed where a decision tree helps decide whether to attend a comedy show based on factors like the comedian’s age, experience, and nationality.

Tools & Libraries Mentioned:

  • Pandas: For handling dataframes and reading different file formats.
  • Scikit-learn: For implementing machine learning models like decision trees.
  • Matplotlib/Seaborn: For data visualization.

Memorable Quotes:

  • "If you forget the values you've assigned, you'll face problems when interpreting the results."
  • "We need to map these data points so that we can understand what decisions to make."

Resources for Further Learning:

  • Python Decision Trees Documentation
  • Understanding Gini Index

Episode Links:

  • Full Transcript
  • Python code examples discussed in the episode
  • Video version of the tutorial (if available)
  continue reading

20 에피소드

כל הפרקים

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생