Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
Contaminated Site Clean-Up Information (CLU-IN)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Contaminated Site Clean-Up Information (CLU-IN) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!
Player FM 앱으로 오프라인으로 전환하세요!
Audio for "Advancing Environmental Health Research with Artificial Intelligence and Machine Learning: Session III — ML & AI Applications to Understand Omics, Metabolomics, & Immunotoxicity and Optimizing Bioengineering Using Datasets, Models, & Mass
Manage episode 453310385 series 129983
Contaminated Site Clean-Up Information (CLU-IN)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Contaminated Site Clean-Up Information (CLU-IN) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
The NIEHS Superfund Research Program (SRP) is hosting a Risk e-Learning webinar series focused on using artificial intelligence (AI) and machine learning to advance environmental health research. The series will feature SRP-funded researchers, collaborators, and other subject-matter experts who aim to better understand and address environmental health issues by applying AI and machine learning approaches to complex issues. Recent advances in AI and machine learning methods show promise to improve the accuracy and efficiency of environmental health research. Over the course of three sessions, presenters will discuss how they use AI and machine learning approaches to improve chemical analysis, characterize chemical risk, understand microbial ecosystems, develop technologies for contaminant removal, and more. In the third and final session, ML & AI Applications to Understand Omics, Metabolomics, & Immunotoxicity and Optimize Bioengineering Using Datasets, Models, and Mass Spectrometry, speakers will discuss how they apply machine learning and artificial intelligence tools to analyze mass spectrometry and microscopy data and optimize models for understanding metabolomics, metabolite pathways, and immunotoxicology To learn about and register for the other sessions in this webinar series, please see the SRP website. Grace Peng, Ph.D., is a co-coordinator of the National Institutes of Health (NIH) Common Fund's Bridge to Artificial Intelligence (Bridge2AI) program, bridging the gap between the biomedical, behavioral and bioethics research communities and the data science/AI communities through a consortium of diverse experts to set the stage for widespread adoption of AI/ML in medicine. Dr. Peng will give an overview of the Bridge2AI program and introduce one of their projects at the University of California San Diego — Trey Ideker, Ph.D. Dr. Ideker will discuss the cell maps for AI (CM4AI) functional genomics project, one of four major data generation projects under the Bridge2AI program. The goal of the project is to provide a comprehensive map of human cellular components through generation of major spatial proteomics datasets. John Efromson, M.S., will present on Ramona Optic, Inc.'s Multi-Camera Array Microscope [MCAM(TM)], which is used to automate imaging and computer vision analysis of zebrafish and greatly improves previous throughput and analysis capabilities. Multiple applications of machine learning will be discussed, including behavioral pose estimation and phenotyping, morphological analysis, and cell counting and fluorescence quantification, as well as how these distinct analyses can be used together for pharmacology, toxicology, and neuroscience research. Speakers:Grace C.Y. Peng, Ph.D., Division of Discovery Science and Technology (Bioengineering), National Institute of Biomedical Imaging and Bioengineering and Trey Ideker, Ph.D., University of California San DiegoJohn Efromson, M.S., Ramona OpticsForest White, Ph.D., Massachusetts Institute of Technology (MIT)Moderator: Hunter Moseley, Ph.D., University of Kentucky To view this archive online or download the slides associated with this seminar, please visit http://www.clu-in.org/conf/tio/SRP-ML-AI3_112224/
…
continue reading
27 에피소드
Audio for "Advancing Environmental Health Research with Artificial Intelligence and Machine Learning: Session III — ML & AI Applications to Understand Omics, Metabolomics, & Immunotoxicity and Optimizing Bioengineering Using Datasets, Models, & Mass
Contaminated Site Clean-Up Information (CLU-IN): Internet Seminar Audio Archives
Manage episode 453310385 series 129983
Contaminated Site Clean-Up Information (CLU-IN)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Contaminated Site Clean-Up Information (CLU-IN) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
The NIEHS Superfund Research Program (SRP) is hosting a Risk e-Learning webinar series focused on using artificial intelligence (AI) and machine learning to advance environmental health research. The series will feature SRP-funded researchers, collaborators, and other subject-matter experts who aim to better understand and address environmental health issues by applying AI and machine learning approaches to complex issues. Recent advances in AI and machine learning methods show promise to improve the accuracy and efficiency of environmental health research. Over the course of three sessions, presenters will discuss how they use AI and machine learning approaches to improve chemical analysis, characterize chemical risk, understand microbial ecosystems, develop technologies for contaminant removal, and more. In the third and final session, ML & AI Applications to Understand Omics, Metabolomics, & Immunotoxicity and Optimize Bioengineering Using Datasets, Models, and Mass Spectrometry, speakers will discuss how they apply machine learning and artificial intelligence tools to analyze mass spectrometry and microscopy data and optimize models for understanding metabolomics, metabolite pathways, and immunotoxicology To learn about and register for the other sessions in this webinar series, please see the SRP website. Grace Peng, Ph.D., is a co-coordinator of the National Institutes of Health (NIH) Common Fund's Bridge to Artificial Intelligence (Bridge2AI) program, bridging the gap between the biomedical, behavioral and bioethics research communities and the data science/AI communities through a consortium of diverse experts to set the stage for widespread adoption of AI/ML in medicine. Dr. Peng will give an overview of the Bridge2AI program and introduce one of their projects at the University of California San Diego — Trey Ideker, Ph.D. Dr. Ideker will discuss the cell maps for AI (CM4AI) functional genomics project, one of four major data generation projects under the Bridge2AI program. The goal of the project is to provide a comprehensive map of human cellular components through generation of major spatial proteomics datasets. John Efromson, M.S., will present on Ramona Optic, Inc.'s Multi-Camera Array Microscope [MCAM(TM)], which is used to automate imaging and computer vision analysis of zebrafish and greatly improves previous throughput and analysis capabilities. Multiple applications of machine learning will be discussed, including behavioral pose estimation and phenotyping, morphological analysis, and cell counting and fluorescence quantification, as well as how these distinct analyses can be used together for pharmacology, toxicology, and neuroscience research. Speakers:Grace C.Y. Peng, Ph.D., Division of Discovery Science and Technology (Bioengineering), National Institute of Biomedical Imaging and Bioengineering and Trey Ideker, Ph.D., University of California San DiegoJohn Efromson, M.S., Ramona OpticsForest White, Ph.D., Massachusetts Institute of Technology (MIT)Moderator: Hunter Moseley, Ph.D., University of Kentucky To view this archive online or download the slides associated with this seminar, please visit http://www.clu-in.org/conf/tio/SRP-ML-AI3_112224/
…
continue reading
27 에피소드
모든 에피소드
×플레이어 FM에 오신것을 환영합니다!
플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.