Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
Contaminated Site Clean-Up Information (CLU-IN)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Contaminated Site Clean-Up Information (CLU-IN) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!
Player FM 앱으로 오프라인으로 전환하세요!
Audio for "Advancing Environmental Health Research with Artificial Intelligence and Machine Learning: Session I — AI & ML Applications to Understand Chemical Mixtures, Properties, and Exposures and Their Relationship to Human Health," Nov 4, 2024
Manage episode 449695091 series 129983
Contaminated Site Clean-Up Information (CLU-IN)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Contaminated Site Clean-Up Information (CLU-IN) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
The NIEHS Superfund Research Program (SRP) is hosting a Risk e-Learning webinar series focused on using artificial intelligence (AI) and machine learning to advance environmental health research. The series will feature SRP-funded researchers, collaborators, and other subject-matter experts who aim to better understand and address environmental health issues by applying AI and machine learning approaches to complex issues. Recent advances in AI and machine learning methods show promise to improve the accuracy and efficiency of environmental health research. Over the course of three sessions, presenters will discuss how they use AI and machine learning approaches to improve chemical analysis, characterize chemical risk, understand microbial ecosystems, develop technologies for contaminant removal, and more. In the first session, AI & ML Applications to Understand Chemical Mixtures, Properties, and Exposures and their Relationship to Human Health, speakers will discuss how they apply machine learning and artificial intelligence techniques to understand chemical exposures and their effects on human health. To learn about and register for the other sessions in this webinar series, please see the SRP website. Naomi Halas, Ph.D., and Ankit Patel, Ph.D., will share updates on their work combining surface-enhanced spectroscopies (Raman and Infrared Absorption) with machine learning algorithms with the goal of developing simple and ultimately low-cost methods for the detection and identification of environmental toxins. As part of their discussion, they will share several approaches, including the use of machine learning algorithms to detect individual constituents in complex mixtures and the use of facial recognition strategies to identify specific chemical toxins in human placenta. Jacob Kvasnicka, Ph.D., will present on a project he supported while he was a postdoctoral researcher at Texas A&M University SRP Center's Risk and Geospatial Sciences Core. There, his work involved developing an ML framework for predicting safe exposure levels to chemicals to avoid cancerous and reproductive/developmental effects. Most chemicals lack toxicity data related to human health, and this study uses ML to fill this gap, greatly expanding the ability to characterize chemical risks and impacts. Trey Saddler will give attendees an overview of ToxPipe — a platform for performing retrieval augmented generation (RAG) over toxicological data. Comprised of a web interface, agentic workflows, and connections to various data sources, ToxPipe enables toxicologists to explore diverse datasets and generate toxicological narratives for a wide range of compounds. Speakers:Naomi Halas, Ph.D., and Ankit Patel, Ph.D., Rice UniversityJacob Kvasnicka, Ph.D., U.S. Environmental Protection AgencyTrey Saddler, NIEHS, Division of Translational ToxicologyModerator: David Reif, Ph.D., NIEHS, Division of Translational Toxicology To view this archive online or download the slides associated with this seminar, please visit http://www.clu-in.org/conf/tio/SRP-ML-AI1_110424/
…
continue reading
29 에피소드
Audio for "Advancing Environmental Health Research with Artificial Intelligence and Machine Learning: Session I — AI & ML Applications to Understand Chemical Mixtures, Properties, and Exposures and Their Relationship to Human Health," Nov 4, 2024
Contaminated Site Clean-Up Information (CLU-IN): Internet Seminar Audio Archives
Manage episode 449695091 series 129983
Contaminated Site Clean-Up Information (CLU-IN)에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Contaminated Site Clean-Up Information (CLU-IN) 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
The NIEHS Superfund Research Program (SRP) is hosting a Risk e-Learning webinar series focused on using artificial intelligence (AI) and machine learning to advance environmental health research. The series will feature SRP-funded researchers, collaborators, and other subject-matter experts who aim to better understand and address environmental health issues by applying AI and machine learning approaches to complex issues. Recent advances in AI and machine learning methods show promise to improve the accuracy and efficiency of environmental health research. Over the course of three sessions, presenters will discuss how they use AI and machine learning approaches to improve chemical analysis, characterize chemical risk, understand microbial ecosystems, develop technologies for contaminant removal, and more. In the first session, AI & ML Applications to Understand Chemical Mixtures, Properties, and Exposures and their Relationship to Human Health, speakers will discuss how they apply machine learning and artificial intelligence techniques to understand chemical exposures and their effects on human health. To learn about and register for the other sessions in this webinar series, please see the SRP website. Naomi Halas, Ph.D., and Ankit Patel, Ph.D., will share updates on their work combining surface-enhanced spectroscopies (Raman and Infrared Absorption) with machine learning algorithms with the goal of developing simple and ultimately low-cost methods for the detection and identification of environmental toxins. As part of their discussion, they will share several approaches, including the use of machine learning algorithms to detect individual constituents in complex mixtures and the use of facial recognition strategies to identify specific chemical toxins in human placenta. Jacob Kvasnicka, Ph.D., will present on a project he supported while he was a postdoctoral researcher at Texas A&M University SRP Center's Risk and Geospatial Sciences Core. There, his work involved developing an ML framework for predicting safe exposure levels to chemicals to avoid cancerous and reproductive/developmental effects. Most chemicals lack toxicity data related to human health, and this study uses ML to fill this gap, greatly expanding the ability to characterize chemical risks and impacts. Trey Saddler will give attendees an overview of ToxPipe — a platform for performing retrieval augmented generation (RAG) over toxicological data. Comprised of a web interface, agentic workflows, and connections to various data sources, ToxPipe enables toxicologists to explore diverse datasets and generate toxicological narratives for a wide range of compounds. Speakers:Naomi Halas, Ph.D., and Ankit Patel, Ph.D., Rice UniversityJacob Kvasnicka, Ph.D., U.S. Environmental Protection AgencyTrey Saddler, NIEHS, Division of Translational ToxicologyModerator: David Reif, Ph.D., NIEHS, Division of Translational Toxicology To view this archive online or download the slides associated with this seminar, please visit http://www.clu-in.org/conf/tio/SRP-ML-AI1_110424/
…
continue reading
29 에피소드
모든 에피소드
×플레이어 FM에 오신것을 환영합니다!
플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.