Artwork

David Linthicum에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 David Linthicum 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Cloud AI Projects Are Failing—Here's What No One's Telling You

12:12
 
공유
 

Manage episode 513364245 series 3660640
David Linthicum에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 David Linthicum 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Ninety-five percent of enterprise generative AI projects fail, a staggering figure revealed by an MIT study. This failure isn't rooted in insufficient infrastructure, as some vendors claim, but rather in human expertise and preparation. Many enterprises lack the talent required to build, train, and refine foundational AI models. Instead of trying to reinvent the wheel, companies would achieve greater success by leveraging mature, licensed AI models developed at scale by industry-leading providers.

The issue of preparation is also critical. Running large-scale AI successfully today would have required enterprises to start planning up to seven years ago, with investments in power, cooling, networking, and infrastructure. Most organizations didn't take those steps, leaving them unprepared for AI at scale. The solution, however, lies in the cloud. Cloud platforms allow enterprises to bypass infrastructure latency and start AI projects immediately using the data they already have. Public cloud providers like AWS, Azure, and GCP enable companies to connect, unify, and reason across on-premises and cloud-based data without years of preparation or costly upgrades.

The future of AI belongs to organizations that act quickly, leveraging available tools and their existing data to drive competitive advantage. Success isn't a distant goal; it's achievable now with cloud-enabled innovation.

  continue reading

84 에피소드

Artwork
icon공유
 
Manage episode 513364245 series 3660640
David Linthicum에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 David Linthicum 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Ninety-five percent of enterprise generative AI projects fail, a staggering figure revealed by an MIT study. This failure isn't rooted in insufficient infrastructure, as some vendors claim, but rather in human expertise and preparation. Many enterprises lack the talent required to build, train, and refine foundational AI models. Instead of trying to reinvent the wheel, companies would achieve greater success by leveraging mature, licensed AI models developed at scale by industry-leading providers.

The issue of preparation is also critical. Running large-scale AI successfully today would have required enterprises to start planning up to seven years ago, with investments in power, cooling, networking, and infrastructure. Most organizations didn't take those steps, leaving them unprepared for AI at scale. The solution, however, lies in the cloud. Cloud platforms allow enterprises to bypass infrastructure latency and start AI projects immediately using the data they already have. Public cloud providers like AWS, Azure, and GCP enable companies to connect, unify, and reason across on-premises and cloud-based data without years of preparation or costly upgrades.

The future of AI belongs to organizations that act quickly, leveraging available tools and their existing data to drive competitive advantage. Success isn't a distant goal; it's achievable now with cloud-enabled innovation.

  continue reading

84 에피소드

Alle episoder

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생