Artwork

Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

RERUN: Could We Use CRISPR to Fight Climate Change? with Professor Kris Niyogi

1:45
 
공유
 

Manage episode 380093509 series 3382676
Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

What is CRISPR?

DNA contains the fundamental information about an organism, and is used as an instruction manual to guide organism structure and function. Until CRISPR (short for Clustered Regularly Interspaced Short Palindromic Repeats) technology was developed by Jennifer Doudna and Emmanuelle Charpentier, editing DNA sequences was very difficult. Here’s the short version of the CRISPR process. First, a CRISPR enzyme is guided by an RNA strand to a DNA strand researchers want to edit. The RNA strand guides the enzyme to a specific point, and the enzyme cuts the DNA molecule. This CRISPR process can be used to eliminate DNA strands, as well as to replace DNA strands using other “repair” enzymes. It is a direct way for human beings to alter the planet’s biological blueprint, and, accordingly, its impact can be a strong force for change, positive or negative.

How can CRISPR be used to fight climate change?

CRISPR can be used to edit the genetic sequences of plants so that they capture more carbon during photosynthesis, and store it in the ground long-term. Since around a third of the Earth’s land is cropland, CRISPR-modified agriculture could potentially sequester billions of tons of carbon each year. Professor Kris Niyogi at UC Berkeley studies how CRISPR can be used to increase the efficiency of sunlight utilization in plants during photosynthesis. Photosynthesis captures carbon dioxide, and requires sunlight to do so. By not letting any sunlight go to waste, the plant can capture more carbon dioxide from the atmosphere. CRISPR can also be used to create plants with deeper roots, enabling carbon to be stored deeper in the ground. UC Berkeley Professor Peggy Lamaux studies sorghum plants, searching for the genes responsible for sorghum’s deep roots. Related genes in rice and wheat could be altered to have deeper roots, like the sorghum plant. And UC Berkeley Professor Jill Banfield studies how plant-microbe interactions can be altered by CRISPR to store more carbon in soil. Soil microbes secrete sticky biopolymers, which can take soil humic substances and lock them with minerals to create long-lasting associations (potentially up to 100 years) that hold carbon. The Banfield lab aims to CRISPR-modify plants so that they chemically “talk” to microbes, emitting chemicals that encourage the microbes to create more “sticky” carbon, rather than carbon that would be emitted into the atmosphere.

Who is Kris Niyogi?

Kris Niyogi is a Howard Hughes Medical Institute Investigator, a professor in the Department of Plant and Microbial Biology at the University of California, Berkeley, and a faculty scientist in the Molecular Biophysics and Integrated Bioimaging Division at Lawrence Berkeley National Laboratory. The Niyogi Lab studies photosynthetic energy conversion and its regulation in algae and plants. The lab's long-term research goals are to understand how photosynthesis operates, how it is regulated, and how it might be improved to help meet the world's needs for food and fuel. Dr. Niyogi earned his biology PhD from MIT.

Further Reading

In 10 years, CRISPR transformed medicine. Can it now help us deal with climate change? | University of California

This scientist thinks she has the key to curb climate change: super plants

Supercharging Plants and Soils to Remove Carbon from the Atmosphere

CRISPR-Cas Can Help Reduce Climate Change

Can we hack DNA in plants to help fight climate change?

For a transcript, please visit https://climatebreak.org/using-crispr-to-fight-climate-change-with-professor-kris-niyogi/

  continue reading

222 에피소드

Artwork
icon공유
 
Manage episode 380093509 series 3382676
Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

What is CRISPR?

DNA contains the fundamental information about an organism, and is used as an instruction manual to guide organism structure and function. Until CRISPR (short for Clustered Regularly Interspaced Short Palindromic Repeats) technology was developed by Jennifer Doudna and Emmanuelle Charpentier, editing DNA sequences was very difficult. Here’s the short version of the CRISPR process. First, a CRISPR enzyme is guided by an RNA strand to a DNA strand researchers want to edit. The RNA strand guides the enzyme to a specific point, and the enzyme cuts the DNA molecule. This CRISPR process can be used to eliminate DNA strands, as well as to replace DNA strands using other “repair” enzymes. It is a direct way for human beings to alter the planet’s biological blueprint, and, accordingly, its impact can be a strong force for change, positive or negative.

How can CRISPR be used to fight climate change?

CRISPR can be used to edit the genetic sequences of plants so that they capture more carbon during photosynthesis, and store it in the ground long-term. Since around a third of the Earth’s land is cropland, CRISPR-modified agriculture could potentially sequester billions of tons of carbon each year. Professor Kris Niyogi at UC Berkeley studies how CRISPR can be used to increase the efficiency of sunlight utilization in plants during photosynthesis. Photosynthesis captures carbon dioxide, and requires sunlight to do so. By not letting any sunlight go to waste, the plant can capture more carbon dioxide from the atmosphere. CRISPR can also be used to create plants with deeper roots, enabling carbon to be stored deeper in the ground. UC Berkeley Professor Peggy Lamaux studies sorghum plants, searching for the genes responsible for sorghum’s deep roots. Related genes in rice and wheat could be altered to have deeper roots, like the sorghum plant. And UC Berkeley Professor Jill Banfield studies how plant-microbe interactions can be altered by CRISPR to store more carbon in soil. Soil microbes secrete sticky biopolymers, which can take soil humic substances and lock them with minerals to create long-lasting associations (potentially up to 100 years) that hold carbon. The Banfield lab aims to CRISPR-modify plants so that they chemically “talk” to microbes, emitting chemicals that encourage the microbes to create more “sticky” carbon, rather than carbon that would be emitted into the atmosphere.

Who is Kris Niyogi?

Kris Niyogi is a Howard Hughes Medical Institute Investigator, a professor in the Department of Plant and Microbial Biology at the University of California, Berkeley, and a faculty scientist in the Molecular Biophysics and Integrated Bioimaging Division at Lawrence Berkeley National Laboratory. The Niyogi Lab studies photosynthetic energy conversion and its regulation in algae and plants. The lab's long-term research goals are to understand how photosynthesis operates, how it is regulated, and how it might be improved to help meet the world's needs for food and fuel. Dr. Niyogi earned his biology PhD from MIT.

Further Reading

In 10 years, CRISPR transformed medicine. Can it now help us deal with climate change? | University of California

This scientist thinks she has the key to curb climate change: super plants

Supercharging Plants and Soils to Remove Carbon from the Atmosphere

CRISPR-Cas Can Help Reduce Climate Change

Can we hack DNA in plants to help fight climate change?

For a transcript, please visit https://climatebreak.org/using-crispr-to-fight-climate-change-with-professor-kris-niyogi/

  continue reading

222 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생