Artwork

Player FM - Internet Radio Done Right
Checked 2d ago
추가했습니다 two 년 전
Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!
icon Daily Deals

COF 999 Carbon Capture, with Dr. Omar Yaghi

1:45
 
공유
 

Manage episode 460093736 series 3382676
Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

What is COF 999?

UC Berkeley chemistry professor Dr. Omar Yaghi recently led a study which has the potential to be revolutionary in reducing the quantity of carbon dioxide present in the atmosphere. “Covalent organic framework number 999,” or COF 999, is a yellow, powder-like material that has billions of tiny holes. Inside of these holes, researchers in Dr. Yaghi’s lab have installed molecular units that can seek out carbon dioxide, enabling the substance to suck in and capture the carbon dioxide. COF 999 has a huge capacity for absorbing emissions; half a pound of the powder can absorb as much carbon dioxide as a tree captures in a year.

The carbon dioxide problem

The quantity of carbon dioxide in the atmosphere has reached an all-time high, with a global average in 2023 of 419.3 parts per million. This immense amount of carbon dioxide in the atmosphere comes from a number of human sources, the most common of which is the burning of fossil fuels such as coal, oil, and natural gas for energy. Carbon dioxide is the most abundant greenhouse gas in the atmosphere, and contributes significantly to global warming and other environmental issues, including ocean acidification.

Applying COF 999

In an interview with Forbes, Dr. Yaghi described the way he sees COF 999 being implemented as a solution. The powder can be made into pellets or a coating, and then integrated into facilities where flue gas –the gas that is released from industrial processes –is released. “This flue gas would pass through the material and because it just plucks out CO2, it cleans CO2 from that flue before it reaches the atmosphere.” According to the San Francisco Standard, Dr. Yaghi says that the powder “requires no energy, shows no signs of degradation even after 100 uses, and is made from inexpensive, commercially available materials.” Another benefit is that the material only needs to be heated to 50 or 60 degrees Celsius, rather than to 120 like many other traditional materials necessary for carbon capture.

In order to see significant change in the atmosphere’s carbon dioxide concentration, we will need to couple preventing carbon dioxide emissions with direct air capture, which COF 999 can also do. According to Zihui Zhou, a UC Berkeley graduate student who worked in Dr. Yaghi’s lab says, “Currently, the CO2 concentration in the atmosphere is more than 420 ppm, but that will increase to maybe 500 or 550 before we fully develop and employ flue gas capture. So if we want to decrease the concentration and go back to maybe 400 or 300 ppm, we have to use direct air capture.” It will take time, however, for scientists to be able to use COF 999 effectively. This is because the powder has not been tested in real-life scenarios, and therefore the costs and risks from the powder are largely unknown; for example, the powder might restrict air flow through filters when applied, reducing the practicality of the powder.

About our guest

Dr. Omar Yaghi is a professor of chemistry at the University of California Berkeley, and the Founding Director of the Berkeley Global Science Institute, whose mission is to build centers of research in developing countries and provide opportunities for young scholars to discover and learn. He is an elected member of the U.S. National Academy of Sciences as well as the German National Academy of Sciences Leopoldina.

Resources

For a transcript, please visit https://climatebreak.org/cof-999-carbon-capture-with-dr-omar-yaghi/

  continue reading

184 에피소드

Artwork
icon공유
 
Manage episode 460093736 series 3382676
Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Project Climate, Center for Law, Energy & the Environment, Berkeley Law and Berkeley Law 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

What is COF 999?

UC Berkeley chemistry professor Dr. Omar Yaghi recently led a study which has the potential to be revolutionary in reducing the quantity of carbon dioxide present in the atmosphere. “Covalent organic framework number 999,” or COF 999, is a yellow, powder-like material that has billions of tiny holes. Inside of these holes, researchers in Dr. Yaghi’s lab have installed molecular units that can seek out carbon dioxide, enabling the substance to suck in and capture the carbon dioxide. COF 999 has a huge capacity for absorbing emissions; half a pound of the powder can absorb as much carbon dioxide as a tree captures in a year.

The carbon dioxide problem

The quantity of carbon dioxide in the atmosphere has reached an all-time high, with a global average in 2023 of 419.3 parts per million. This immense amount of carbon dioxide in the atmosphere comes from a number of human sources, the most common of which is the burning of fossil fuels such as coal, oil, and natural gas for energy. Carbon dioxide is the most abundant greenhouse gas in the atmosphere, and contributes significantly to global warming and other environmental issues, including ocean acidification.

Applying COF 999

In an interview with Forbes, Dr. Yaghi described the way he sees COF 999 being implemented as a solution. The powder can be made into pellets or a coating, and then integrated into facilities where flue gas –the gas that is released from industrial processes –is released. “This flue gas would pass through the material and because it just plucks out CO2, it cleans CO2 from that flue before it reaches the atmosphere.” According to the San Francisco Standard, Dr. Yaghi says that the powder “requires no energy, shows no signs of degradation even after 100 uses, and is made from inexpensive, commercially available materials.” Another benefit is that the material only needs to be heated to 50 or 60 degrees Celsius, rather than to 120 like many other traditional materials necessary for carbon capture.

In order to see significant change in the atmosphere’s carbon dioxide concentration, we will need to couple preventing carbon dioxide emissions with direct air capture, which COF 999 can also do. According to Zihui Zhou, a UC Berkeley graduate student who worked in Dr. Yaghi’s lab says, “Currently, the CO2 concentration in the atmosphere is more than 420 ppm, but that will increase to maybe 500 or 550 before we fully develop and employ flue gas capture. So if we want to decrease the concentration and go back to maybe 400 or 300 ppm, we have to use direct air capture.” It will take time, however, for scientists to be able to use COF 999 effectively. This is because the powder has not been tested in real-life scenarios, and therefore the costs and risks from the powder are largely unknown; for example, the powder might restrict air flow through filters when applied, reducing the practicality of the powder.

About our guest

Dr. Omar Yaghi is a professor of chemistry at the University of California Berkeley, and the Founding Director of the Berkeley Global Science Institute, whose mission is to build centers of research in developing countries and provide opportunities for young scholars to discover and learn. He is an elected member of the U.S. National Academy of Sciences as well as the German National Academy of Sciences Leopoldina.

Resources

For a transcript, please visit https://climatebreak.org/cof-999-carbon-capture-with-dr-omar-yaghi/

  continue reading

184 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

icon Daily Deals
icon Daily Deals
icon Daily Deals

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생