Artwork

CCC media team에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 CCC media team 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Variational Autoencorders: the cognitive scientist's favorite deep learning tool (realraum)

41:56
 
공유
 

Manage episode 515596381 series 48696
CCC media team에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 CCC media team 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Variational Autoencoders (VAEs) were first introduced as early concept learners in the vision domain. Since then, they have become a staple tool in generative modeling, representation learning, and unsupervised learning more broadly. Their use as analogues of human cognition is one of the first steps towards the understanding of more complex cognitive models leading up to models of human brain function and behavior. As part of a series of talks on cognitive science and deep learning at the realraum in Graz, this presentation will focus on the role of VAEs in cognitive science research. Topics: - Supervised vs. unsupervised learning - Deep Learning basics: classifiers and backpropagation - Autoencoders: architecture, training, embedding, and generative modeling - Variational Autoencoders: statistical latent space, and the reparametrization trick - Training VAEs: loss functions, optimization, and the KL divergence - Concept learning: VAEs in cognitive science https://creativecommons.org/licenses/by-sa/4.0/ about this event: https://cfp.realraum.at/realraum-october/talk/LHH3M9/
  continue reading

3377 에피소드

Artwork
icon공유
 
Manage episode 515596381 series 48696
CCC media team에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 CCC media team 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Variational Autoencoders (VAEs) were first introduced as early concept learners in the vision domain. Since then, they have become a staple tool in generative modeling, representation learning, and unsupervised learning more broadly. Their use as analogues of human cognition is one of the first steps towards the understanding of more complex cognitive models leading up to models of human brain function and behavior. As part of a series of talks on cognitive science and deep learning at the realraum in Graz, this presentation will focus on the role of VAEs in cognitive science research. Topics: - Supervised vs. unsupervised learning - Deep Learning basics: classifiers and backpropagation - Autoencoders: architecture, training, embedding, and generative modeling - Variational Autoencoders: statistical latent space, and the reparametrization trick - Training VAEs: loss functions, optimization, and the KL divergence - Concept learning: VAEs in cognitive science https://creativecommons.org/licenses/by-sa/4.0/ about this event: https://cfp.realraum.at/realraum-october/talk/LHH3M9/
  continue reading

3377 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드

탐색하는 동안 이 프로그램을 들어보세요.
재생