Artwork

Tedy Nenu에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Tedy Nenu 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Joel David Hamkins on Infinity, Gödel's Theorems and Set Theory | Episode 1

1:16:49
 
공유
 

Manage episode 394805560 series 3549261
Tedy Nenu에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Tedy Nenu 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Joel David Hamkins is an American Mathematician who is currently Professor of Logic at the University of Oxford. He is well known for his important contributions in the fields of Mathematical Logic, Set Theory and Philosophy of Mathematics. Moreover, he is very popular in the mathematical community for being the highest rated user on MathOverflow.
Outline of the conversation:
00:00 Podcast Introduction
00:50 MathOverflow and books in progress
04:08 Mathphobia
05:58 What is mathematics and what sets it apart?
08:06 Is mathematics invented or discovered (more at 54:28)
09:24 How is it the case that Mathematics can be applied so successfully to the physical world?
12:37 Infinity in Mathematics
16:58 Cantor's Theorem: the real numbers cannot be enumerated
24:22 Russell's Paradox and the Cumulative Hierarchy of Sets
29:20 Hilbert's Program and Godel's Results
35:05 The First Incompleteness Theorem, formal and informal proofs and the connection between mathematical truths and mathematical proofs
40:50 Computer Assisted Proofs and mathematical insight
44:11 Do automated proofs kill the artistic side of Mathematics?
48:50 Infinite Time Turing Machines can settle Goldbach's Conjecture or the Riemann Hypothesis
54:28 Nonstandard models of arithmetic: different conceptions of the natural numbers
1:00:02 The Continuum Hypothesis and related undecidable questions, the Set-Theoretic Multiverse and the quest for new axioms
1:10:31 Minds and computers: Sir Roger Penrose's argument concerning consciousness
Twitter: https://twitter.com/tedynenu

  continue reading

15 에피소드

Artwork
icon공유
 
Manage episode 394805560 series 3549261
Tedy Nenu에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Tedy Nenu 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Joel David Hamkins is an American Mathematician who is currently Professor of Logic at the University of Oxford. He is well known for his important contributions in the fields of Mathematical Logic, Set Theory and Philosophy of Mathematics. Moreover, he is very popular in the mathematical community for being the highest rated user on MathOverflow.
Outline of the conversation:
00:00 Podcast Introduction
00:50 MathOverflow and books in progress
04:08 Mathphobia
05:58 What is mathematics and what sets it apart?
08:06 Is mathematics invented or discovered (more at 54:28)
09:24 How is it the case that Mathematics can be applied so successfully to the physical world?
12:37 Infinity in Mathematics
16:58 Cantor's Theorem: the real numbers cannot be enumerated
24:22 Russell's Paradox and the Cumulative Hierarchy of Sets
29:20 Hilbert's Program and Godel's Results
35:05 The First Incompleteness Theorem, formal and informal proofs and the connection between mathematical truths and mathematical proofs
40:50 Computer Assisted Proofs and mathematical insight
44:11 Do automated proofs kill the artistic side of Mathematics?
48:50 Infinite Time Turing Machines can settle Goldbach's Conjecture or the Riemann Hypothesis
54:28 Nonstandard models of arithmetic: different conceptions of the natural numbers
1:00:02 The Continuum Hypothesis and related undecidable questions, the Set-Theoretic Multiverse and the quest for new axioms
1:10:31 Minds and computers: Sir Roger Penrose's argument concerning consciousness
Twitter: https://twitter.com/tedynenu

  continue reading

15 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드