Optical Flow Estimation, Panoptic Segmentation, and Vision Transformers with Fatih Porikli - #579

51:17
 
공유
 

Manage episode 332123393 series 2355587
Player FM과 저희 커뮤니티의 TWIML and Sam Charrington 콘텐츠는 모두 원 저작자에게 속하며 Player FM이 아닌 작가가 저작권을 갖습니다. 오디오는 해당 서버에서 직접 스트리밍 됩니다. 구독 버튼을 눌러 Player FM에서 업데이트 현황을 확인하세요. 혹은 다른 팟캐스트 앱에서 URL을 불러오세요.

Today we kick off our annual coverage of the CVPR conference joined by Fatih Porikli, Senior Director of Engineering at Qualcomm AI Research. In our conversation with Fatih, we explore a trio of CVPR-accepted papers, as well as a pair of upcoming workshops at the event. The first paper, Panoptic, Instance and Semantic Relations: A Relational Context Encoder to Enhance Panoptic Segmentation, presents a novel framework to integrate semantic and instance contexts for panoptic segmentation. Next up, we discuss Imposing Consistency for Optical Flow Estimation, a paper that introduces novel and effective consistency strategies for optical flow estimation. The final paper we discuss is IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in Indoor Scenes, which proposes a transformer architecture to simultaneously estimate depths, normals, spatially-varying albedo, roughness, and lighting from a single image of an indoor scene. For each paper, we explore the motivations and challenges and get concrete examples to demonstrate each problem and solution presented.

The complete show notes for this episode can be found at twimlai.com/go/579

641 에피소드