Artwork

TWIML and Sam Charrington에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 TWIML and Sam Charrington 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Multilingual LLMs and the Values Divide in AI with Sara Hooker - #651

1:18:39
 
공유
 

Manage episode 379998262 series 2355587
TWIML and Sam Charrington에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 TWIML and Sam Charrington 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Today we’re joined by Sara Hooker, director at Cohere and head of Cohere For AI, Cohere’s research lab. In our conversation with Sara, we explore some of the challenges with multilingual models like poor data quality and tokenization, and how they rely on data augmentation and preference training to address these bottlenecks. We also discuss the disadvantages and the motivating factors behind the Mixture of Experts technique, and the importance of common language between ML researchers and hardware architects to address the pain points in frameworks and create a better cohesion between the distinct communities. Sara also highlights the impact and the emotional connection that language models have created in society, the benefits and the current safety concerns of universal models, and the significance of having grounded conversations to characterize and mitigate the risk and development of AI models. Along the way, we also dive deep into Cohere and Cohere for AI, along with their Aya project, an open science project that aims to build a state-of-the-art multilingual generative language model as well as some of their recent research papers.

The complete show notes for this episode can be found at twimlai.com/go/651.

  continue reading

704 에피소드

Artwork
icon공유
 
Manage episode 379998262 series 2355587
TWIML and Sam Charrington에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 TWIML and Sam Charrington 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Today we’re joined by Sara Hooker, director at Cohere and head of Cohere For AI, Cohere’s research lab. In our conversation with Sara, we explore some of the challenges with multilingual models like poor data quality and tokenization, and how they rely on data augmentation and preference training to address these bottlenecks. We also discuss the disadvantages and the motivating factors behind the Mixture of Experts technique, and the importance of common language between ML researchers and hardware architects to address the pain points in frameworks and create a better cohesion between the distinct communities. Sara also highlights the impact and the emotional connection that language models have created in society, the benefits and the current safety concerns of universal models, and the significance of having grounded conversations to characterize and mitigate the risk and development of AI models. Along the way, we also dive deep into Cohere and Cohere for AI, along with their Aya project, an open science project that aims to build a state-of-the-art multilingual generative language model as well as some of their recent research papers.

The complete show notes for this episode can be found at twimlai.com/go/651.

  continue reading

704 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드