Artwork

Hopewell Valley Student Publications Network에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Hopewell Valley Student Publications Network 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Reception: G Protein Receptors, Tyrosine Kinase Receptors

5:12
 
공유
 

Manage episode 293374610 series 2859788
Hopewell Valley Student Publications Network에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Hopewell Valley Student Publications Network 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

My AP Biology Thoughts

Unit 4 Cell Communication and Cell Cycle

Welcome to My AP Biology Thoughts podcast, my name is Sid and I am your host for episode #86 called Unit 4 Cell Communication and Cell Cycle: G Protein Receptors and Tyrosine Kinase Receptors.

Segment 1: Introduction to G protein receptors and tyrosine kinase receptors

  • G Protein receptors and tyrosine kinase receptors both work to mediate cell communication by binding a signaling molecule, which is also called a ligand. Then this signal is sent through a transduction pathway where the last target protein causes some response. The response for both can be a variety of things such as gene expression, apoptosis, metabolic responses, cell division, or cell growth. Despite being similar in this way, g protein receptors and tyrosine kinase receptors work in very different ways

Segment 2: More About G protein receptors

  • Let's start by discussing g protein receptors. G proteins are very diverse and can bind to many different signals. One example is odorant (or scent) receptors. G proteins receptors are located in the cell membrane which is where an extracellular ligand binds to it. The signal is eventually sent to a g protein which is located on the membrane, but on the cytoplasmic side. Before the G protein is activated, GDP is bound to it which keeps it inactive. GDP is guanosine diphosphate. After the signal binds to the receptor, the receptor slightly changes shape and becomes active. Then, the GDP binds to the g protein receptor. Since the G protein no longer has a GDP bound to it, it frees it up to accept and bind to GTP. The GTP activates the G protein. The G protein is made up of three subunits: alpha, beta, and gamma. When the GTP is bound to the G protein and activates it, the alpha subunit detaches and moves away from the receptor. Now the G protein is split into two parts: one part is the single alpha subunit and the other is the beta and gamma subunits. These two parts can go on to interact with other proteins and cause a transduction pathway that results in one of many responses. Eventually, the alpha subunit comes back and hydrolyzes the GTP which keeps the G protein active and changes it back into GDP. At this point the G protein will once again become inactive. G proteins coupled receptors are very important in the human body. Disruptions can cause diseases like cystic fibrosis or cholera.
  • Now let's talk about tyrosine kinase receptors. Tyrosine kinase receptors are enzyme linked receptors. Enzyme linked receptors are receptors that are associated with an enzyme. A kinase is a protein that phosphorylates other proteins. For tyrosine kinase receptors, the kinase phosphorylates tyrosine. To start the process, a signalling molecule attaches to two tyrosine kinase receptors. These come together and form a dimer. Then, each tyrosine kinase receptor phosphorylates the domains of the tyrosine kinase receptor. Then, once the tyrosine is phosphorylated, it can send signals to other molecules

Segment 3: Connection to the Course

  • G protein receptors and tyrosine kinase receptors are very important to many species. Problems with g protein receptors can cause choler, cystic fibrosis, and some bacterial infections. Problems with tyrosine kinase receptors can also cause diseases and cancers. Both of these receptors play integral parts in many different species. This can be evidence of the endosymbiotic theory. Since so many species use these receptors, they likely came from a common ancestor and had an evolutionary advantage.

Thank you for listening to this episode of My AP Biology Thoughts. For more student-ran podcasts and digital content, make sure that you visit www.hvspn.com.

Music Credits:

  • "Ice Flow" Kevin MacLeod (incompetech.com)
  • Licensed under Creative Commons: By Attribution 4.0 License
  • http://creativecommons.org/licenses/by/4.0/

Subscribe to our Podcast

Apple Podcasts

Spotify

Google Podcasts

YouTube

Connect with us on Social Media

Twitter @thehvspn

  continue reading

130 에피소드

Artwork
icon공유
 
Manage episode 293374610 series 2859788
Hopewell Valley Student Publications Network에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Hopewell Valley Student Publications Network 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

My AP Biology Thoughts

Unit 4 Cell Communication and Cell Cycle

Welcome to My AP Biology Thoughts podcast, my name is Sid and I am your host for episode #86 called Unit 4 Cell Communication and Cell Cycle: G Protein Receptors and Tyrosine Kinase Receptors.

Segment 1: Introduction to G protein receptors and tyrosine kinase receptors

  • G Protein receptors and tyrosine kinase receptors both work to mediate cell communication by binding a signaling molecule, which is also called a ligand. Then this signal is sent through a transduction pathway where the last target protein causes some response. The response for both can be a variety of things such as gene expression, apoptosis, metabolic responses, cell division, or cell growth. Despite being similar in this way, g protein receptors and tyrosine kinase receptors work in very different ways

Segment 2: More About G protein receptors

  • Let's start by discussing g protein receptors. G proteins are very diverse and can bind to many different signals. One example is odorant (or scent) receptors. G proteins receptors are located in the cell membrane which is where an extracellular ligand binds to it. The signal is eventually sent to a g protein which is located on the membrane, but on the cytoplasmic side. Before the G protein is activated, GDP is bound to it which keeps it inactive. GDP is guanosine diphosphate. After the signal binds to the receptor, the receptor slightly changes shape and becomes active. Then, the GDP binds to the g protein receptor. Since the G protein no longer has a GDP bound to it, it frees it up to accept and bind to GTP. The GTP activates the G protein. The G protein is made up of three subunits: alpha, beta, and gamma. When the GTP is bound to the G protein and activates it, the alpha subunit detaches and moves away from the receptor. Now the G protein is split into two parts: one part is the single alpha subunit and the other is the beta and gamma subunits. These two parts can go on to interact with other proteins and cause a transduction pathway that results in one of many responses. Eventually, the alpha subunit comes back and hydrolyzes the GTP which keeps the G protein active and changes it back into GDP. At this point the G protein will once again become inactive. G proteins coupled receptors are very important in the human body. Disruptions can cause diseases like cystic fibrosis or cholera.
  • Now let's talk about tyrosine kinase receptors. Tyrosine kinase receptors are enzyme linked receptors. Enzyme linked receptors are receptors that are associated with an enzyme. A kinase is a protein that phosphorylates other proteins. For tyrosine kinase receptors, the kinase phosphorylates tyrosine. To start the process, a signalling molecule attaches to two tyrosine kinase receptors. These come together and form a dimer. Then, each tyrosine kinase receptor phosphorylates the domains of the tyrosine kinase receptor. Then, once the tyrosine is phosphorylated, it can send signals to other molecules

Segment 3: Connection to the Course

  • G protein receptors and tyrosine kinase receptors are very important to many species. Problems with g protein receptors can cause choler, cystic fibrosis, and some bacterial infections. Problems with tyrosine kinase receptors can also cause diseases and cancers. Both of these receptors play integral parts in many different species. This can be evidence of the endosymbiotic theory. Since so many species use these receptors, they likely came from a common ancestor and had an evolutionary advantage.

Thank you for listening to this episode of My AP Biology Thoughts. For more student-ran podcasts and digital content, make sure that you visit www.hvspn.com.

Music Credits:

  • "Ice Flow" Kevin MacLeod (incompetech.com)
  • Licensed under Creative Commons: By Attribution 4.0 License
  • http://creativecommons.org/licenses/by/4.0/

Subscribe to our Podcast

Apple Podcasts

Spotify

Google Podcasts

YouTube

Connect with us on Social Media

Twitter @thehvspn

  continue reading

130 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드