Artwork

Active Motif에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Active Motif 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

CpG Islands, DNA Methylation, and Disease (Adrian Bird)

47:10
 
공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on September 02, 2022 22:36 (1+ y ago). Last successful fetch was on July 28, 2022 16:40 (1+ y ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 264747451 series 2369335
Active Motif에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Active Motif 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of the Epigenetics Podcast, we caught up with Sir Adrian Bird, Buchanan Professor of Genetics at the University of Edinburgh to talk about his work on CpG islands, DNA methylation, and the role of DNA methylation in human diseases.

Adrian Bird has been a pioneer in studying the CpG dinucleotide sequence. The CpG dinucleotide is distributed genome-wide and has several properties expected of a genomic signaling module. The influence of CpG signaling on prozesses like development, differentiation, and disease is hardly understood. Adrian Bird's work indicates that proteins that bind methylated CpGs recruit chromatin modifying enzymes to promote gene silencing. On the other hand, proteins that bind unmethylated CpGs lead to the formation of active, open chromatin. These results suggest that CpGs have a gobal effect on genome activity.

In neurons MeCP2 is almost as abundant as histones and is probably one of the best studied Proteins that bind to methyl-CpGs. Children who lack MeCP2 acquire serious neurological disorders, in particular Rett Syndrome. Rett Syndrome is caused by defects of a single gene, which lead to the opportunity to study its molecular mechanism, which involves MeCP2 in detail. Adrian Bird created a mouse model of Rett Syndrome which has lead to the discovery that reintroducing a functional MeCP2 gene in mice can lead to a "curation" of the symptoms.

In this interview, podcast host Stefan Dillinger and Adrian discuss CpG islands, DNA methylation, and how the discovery of MeCP2 lead to the discovery of a possible treatment of Rett Syndrome.

References

  • S. Lindsay, A. P. Bird (1987) Use of restriction enzymes to detect potential gene sequences in mammalian DNA (Nature) DOI: 10.1038/327336a0
  • R. R. Meehan, J. D. Lewis, … A. P. Bird (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs (Cell) DOI: 10.1016/0092-8674(89)90430-3
  • R. R. Meehan, J. D. Lewis, A. P. Bird (1992) Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA (Nucleic Acids Research) DOI: 10.1093/nar/20.19.5085
  • Eric U. Selker, Nikolaos A. Tountas, … Michael Freitag (2003) The methylated component of the Neurospora crassa genome (Nature) DOI: 10.1038/nature01564
  • Robert J. Klose, Shireen A. Sarraf, … Adrian P. Bird (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG (Molecular Cell) DOI: 10.1016/j.molcel.2005.07.021
  • Jacky Guy, Jian Gan, … Adrian Bird (2007) Reversal of neurological defects in a mouse model of Rett syndrome (Science (New York, N.Y.)) DOI: 10.1126/science.1138389
  • Daniel H. Ebert, Harrison W. Gabel, … Michael E. Greenberg (2013) Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR (Nature) DOI: 10.1038/nature12348

Contact

  continue reading

80 에피소드

Artwork
icon공유
 

저장한 시리즈 ("피드 비활성화" status)

When? This feed was archived on September 02, 2022 22:36 (1+ y ago). Last successful fetch was on July 28, 2022 16:40 (1+ y ago)

Why? 피드 비활성화 status. 잠시 서버에 문제가 발생해 팟캐스트를 불러오지 못합니다.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 264747451 series 2369335
Active Motif에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Active Motif 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

In this episode of the Epigenetics Podcast, we caught up with Sir Adrian Bird, Buchanan Professor of Genetics at the University of Edinburgh to talk about his work on CpG islands, DNA methylation, and the role of DNA methylation in human diseases.

Adrian Bird has been a pioneer in studying the CpG dinucleotide sequence. The CpG dinucleotide is distributed genome-wide and has several properties expected of a genomic signaling module. The influence of CpG signaling on prozesses like development, differentiation, and disease is hardly understood. Adrian Bird's work indicates that proteins that bind methylated CpGs recruit chromatin modifying enzymes to promote gene silencing. On the other hand, proteins that bind unmethylated CpGs lead to the formation of active, open chromatin. These results suggest that CpGs have a gobal effect on genome activity.

In neurons MeCP2 is almost as abundant as histones and is probably one of the best studied Proteins that bind to methyl-CpGs. Children who lack MeCP2 acquire serious neurological disorders, in particular Rett Syndrome. Rett Syndrome is caused by defects of a single gene, which lead to the opportunity to study its molecular mechanism, which involves MeCP2 in detail. Adrian Bird created a mouse model of Rett Syndrome which has lead to the discovery that reintroducing a functional MeCP2 gene in mice can lead to a "curation" of the symptoms.

In this interview, podcast host Stefan Dillinger and Adrian discuss CpG islands, DNA methylation, and how the discovery of MeCP2 lead to the discovery of a possible treatment of Rett Syndrome.

References

  • S. Lindsay, A. P. Bird (1987) Use of restriction enzymes to detect potential gene sequences in mammalian DNA (Nature) DOI: 10.1038/327336a0
  • R. R. Meehan, J. D. Lewis, … A. P. Bird (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs (Cell) DOI: 10.1016/0092-8674(89)90430-3
  • R. R. Meehan, J. D. Lewis, A. P. Bird (1992) Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA (Nucleic Acids Research) DOI: 10.1093/nar/20.19.5085
  • Eric U. Selker, Nikolaos A. Tountas, … Michael Freitag (2003) The methylated component of the Neurospora crassa genome (Nature) DOI: 10.1038/nature01564
  • Robert J. Klose, Shireen A. Sarraf, … Adrian P. Bird (2005) DNA binding selectivity of MeCP2 due to a requirement for A/T sequences adjacent to methyl-CpG (Molecular Cell) DOI: 10.1016/j.molcel.2005.07.021
  • Jacky Guy, Jian Gan, … Adrian Bird (2007) Reversal of neurological defects in a mouse model of Rett syndrome (Science (New York, N.Y.)) DOI: 10.1126/science.1138389
  • Daniel H. Ebert, Harrison W. Gabel, … Michael E. Greenberg (2013) Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR (Nature) DOI: 10.1038/nature12348

Contact

  continue reading

80 에피소드

모든 에피소드

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드