#37 DoK Community: Running Data Replication Pipelines on Kubernetes with Argo // Stephen Bailey

1:02:21
 
공유
 

Manage episode 288298062 series 2865115
Player FM과 저희 커뮤니티의 Bart Farrell 콘텐츠는 모두 원 저작자에게 속하며 Player FM이 아닌 작가가 저작권을 갖습니다. 오디오는 해당 서버에서 직접 스트리밍 됩니다. 구독 버튼을 눌러 Player FM에서 업데이트 현황을 확인하세요. 혹은 다른 팟캐스트 앱에서 URL을 불러오세요.

Abstract of the talk…

Hundreds of data teams have migrated to the ELT pattern in recent years, leveraging SaaS tools like Stitch or FiveTran to reliably load data into their infrastructure. These SaaS offerings are outstanding and can accelerate your time to production significantly. However, many teams prefer to roll their own tools. One solution in these cases is to deploy singer.io taps and targets — Python scripts that can perform data replication between arbitrary sources and destinations. The Singer specification is the foundation for the popular Stitch SaaS, and it is also leveraged by a number of independent consultants and data projects. Singer pipelines are highly modular. You can pipe any tap to any target to build a data pipeline that fits your needs, making them a good fit for containerized workflows. This article walks through the workflow at a high level and provides some example code to get up and running with some shared templates. I also drill into reasons for choosing the Argo approach over other orchestration tools like Airflow or Dagster, and the implications from a team perspective.

Bio…

Stephen Bailey is Director of Growth Analytics at Immuta, where he strives to implement privacy best practices while delivering business value from data. He loves to teach and learn, on just about any subject. He holds a PhD in educational cognitive neuroscience from Vanderbilt and enjoys reading philosophy

59 에피소드