Artwork

Acast France에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Acast France 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.
Player FM -팟 캐스트 앱
Player FM 앱으로 오프라인으로 전환하세요!

Choses à Savoir - Culture générale - Qu’est-ce que le "paradoxe du singe savant" ?

2:18
 
공유
 

Manage episode 455062882 series 3602453
Acast France에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Acast France 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Le "paradoxe du singe savant" est une expérience de pensée fascinante qui illustre des concepts de probabilité et d'infinité. Il repose sur l'idée suivante : imagine un singe frappant aléatoirement les touches d'une machine à écrire pendant une durée infinie. Le paradoxe suggère que, dans un tel contexte, ce singe finirait par taper tous les textes possibles, y compris les œuvres complètes de Shakespeare, par pur hasard.

Ce paradoxe se base sur la notion mathématique d'événements aléatoires sur une période infinie. En théorie, si on laisse un nombre infini de séquences de lettres se produire, même les combinaisons les plus complexes ou improbables finiront par apparaître. Cela ne signifie pas que le singe est intelligent ou qu'il comprend ce qu’il tape ; il s’agit simplement de l’effet de l’aléatoire lorsqu’on lui donne un temps illimité.

En termes de probabilité, l’idée est que la chance de taper une œuvre spécifique, comme Hamlet, en une seule tentative est astronomiquement faible. Pour donner une idée : si un singe tape une suite de lettres aléatoirement, les chances de produire ne serait-ce que la première phrase de Hamlet sont si minimes qu’elles frôlent l’impossible. Pourtant, avec un temps infini, ces chances, aussi minuscules soient-elles, finiraient par se réaliser. C’est le principe des événements rares qui deviennent inévitables lorsqu’on augmente le nombre de tentatives jusqu’à l’infini.

Alors, le paradoxe du singe savant a-t-il de la valeur ? En un sens, oui, mais principalement en tant qu'outil conceptuel pour comprendre la théorie des probabilités et l'infini. Il est utile pour expliquer comment des événements improbables peuvent se produire dans des contextes spécifiques. Par exemple, il aide à comprendre pourquoi certaines séquences semblent extraordinaires ou comment le hasard peut générer de la complexité.

Cependant, le paradoxe est avant tout théorique. Dans le monde réel, où les ressources (temps, espace, etc.) sont limitées, ce concept n'a pas d'applications pratiques directes. Personne n’a un temps infini pour tester de telles expériences, et elles ne se produisent pas naturellement. Malgré cela, l’idée reste précieuse pour illustrer des concepts abstraits de mathématiques et de logique, et elle est souvent utilisée comme exemple pour discuter des idées liées à l’aléatoire et à l'infini dans divers contextes scientifiques et philosophiques.


Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

  continue reading

156 에피소드

Artwork
icon공유
 
Manage episode 455062882 series 3602453
Acast France에서 제공하는 콘텐츠입니다. 에피소드, 그래픽, 팟캐스트 설명을 포함한 모든 팟캐스트 콘텐츠는 Acast France 또는 해당 팟캐스트 플랫폼 파트너가 직접 업로드하고 제공합니다. 누군가가 귀하의 허락 없이 귀하의 저작물을 사용하고 있다고 생각되는 경우 여기에 설명된 절차를 따르실 수 있습니다 https://ko.player.fm/legal.

Le "paradoxe du singe savant" est une expérience de pensée fascinante qui illustre des concepts de probabilité et d'infinité. Il repose sur l'idée suivante : imagine un singe frappant aléatoirement les touches d'une machine à écrire pendant une durée infinie. Le paradoxe suggère que, dans un tel contexte, ce singe finirait par taper tous les textes possibles, y compris les œuvres complètes de Shakespeare, par pur hasard.

Ce paradoxe se base sur la notion mathématique d'événements aléatoires sur une période infinie. En théorie, si on laisse un nombre infini de séquences de lettres se produire, même les combinaisons les plus complexes ou improbables finiront par apparaître. Cela ne signifie pas que le singe est intelligent ou qu'il comprend ce qu’il tape ; il s’agit simplement de l’effet de l’aléatoire lorsqu’on lui donne un temps illimité.

En termes de probabilité, l’idée est que la chance de taper une œuvre spécifique, comme Hamlet, en une seule tentative est astronomiquement faible. Pour donner une idée : si un singe tape une suite de lettres aléatoirement, les chances de produire ne serait-ce que la première phrase de Hamlet sont si minimes qu’elles frôlent l’impossible. Pourtant, avec un temps infini, ces chances, aussi minuscules soient-elles, finiraient par se réaliser. C’est le principe des événements rares qui deviennent inévitables lorsqu’on augmente le nombre de tentatives jusqu’à l’infini.

Alors, le paradoxe du singe savant a-t-il de la valeur ? En un sens, oui, mais principalement en tant qu'outil conceptuel pour comprendre la théorie des probabilités et l'infini. Il est utile pour expliquer comment des événements improbables peuvent se produire dans des contextes spécifiques. Par exemple, il aide à comprendre pourquoi certaines séquences semblent extraordinaires ou comment le hasard peut générer de la complexité.

Cependant, le paradoxe est avant tout théorique. Dans le monde réel, où les ressources (temps, espace, etc.) sont limitées, ce concept n'a pas d'applications pratiques directes. Personne n’a un temps infini pour tester de telles expériences, et elles ne se produisent pas naturellement. Malgré cela, l’idée reste précieuse pour illustrer des concepts abstraits de mathématiques et de logique, et elle est souvent utilisée comme exemple pour discuter des idées liées à l’aléatoire et à l'infini dans divers contextes scientifiques et philosophiques.


Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

  continue reading

156 에피소드

All episodes

×
 
Loading …

플레이어 FM에 오신것을 환영합니다!

플레이어 FM은 웹에서 고품질 팟캐스트를 검색하여 지금 바로 즐길 수 있도록 합니다. 최고의 팟캐스트 앱이며 Android, iPhone 및 웹에서도 작동합니다. 장치 간 구독 동기화를 위해 가입하세요.

 

빠른 참조 가이드